Abstract
Mice of strain DBA/2J were found to produce red cells considerably more resistant to osmotic lysis than cells from C57BL/6J or the F1 hybrid between the two strains. Such strain-specific differences in osmotic fragility could be the result of genetically determined humoral or other systemic differences that indirectly influence red cell properties. Alternatively, this phenotypic variation might be an inherent property of the erythrocyte themselves and be directly controlled by their genotype. Analysis of red cells from allophenic (mosaic) mice of the strain composition C57BL/6J in equilibrium DBA/2J demonstrated that the latter possibility is the case. In such mice, erythrocytes of the DBA/2J genotype are relatively more resistant to osmotic lysis than are those of the C57BL/6J genotype; partial lysis of allophenic blood at intermediate salt concentrations results in marked enrichment for DBA/2J cells among the survivors. Future experiments designed to determine the mechanism underlying this difference can now focus on the properties of the red blood cells per se with the certainty that this property is inherent to the genotype of each cell.