Abstract
The abnormal multimeric composition of plasma von Willebrand factor in type IIB von Willebrand's disease is transiently corrected after infusion of 1-deamino-[8-D-arginine]-vasopressin. However, the larger multimers released into the circulation disappear more rapidly in these patients than in type I von Willebrand's disease or normals. We demonstrate that the larger multimers of normal von Willebrand factor transfused into a type IIB patient are cleared from the circulation more slowly than multimers of similar size endogenously released from tissue stores. The rate of disappearance of large von Willebrand factor multimers after infusion of cryoprecipitate is similar in IIB, IIA, and severe homozygous-like von Willebrand's disease. Platelets from the IIB patient exhibited normal ristocetin-induced binding of normal von Willebrand factor. However, like normal platelets, they bound IIB von Willebrand factor at lower ristocetin concentrations than required for normal von Willebrand factor. These findings provide evidence that absence of the larger multimers from IIB plasma is related to a molecular abnormality of von Willebrand factor rather than to enhanced affinity of abnormal tissue or cellular binding sites, as is the case in the recently described “pseudo” von Willebrand's disease and “platelet-type” von Willebrand's disease.