Abstract
In order to determine whether the tumor-promoting phorbol esters are capable of inducing normal human committed granulocytic-monocytic progenitor cells (CFUc) to proliferate and differentiate in the absence of granulocyte-monocyte colony-stimulating activity (CSA), we studied the effects of these compounds on human granulopoiesis in vitro. We found that when light-density human marrow cells or peripheral blood leukocytes were depleted of adherent cells and then incubated in semisolid tissue culture medium under conditions optimal for CFUc growth, phorbol myristate acetate (PMA) and its congeners produced no measurable stimulatory effect on the proliferation of CFUc in the absence of added CSA. Likewise, when light-density marrow cells that had not been depleted of adherent cells were plated in the cultures, no stimulation of CFUc colony growth resulted from the addition of PMA. However, when light-density peripheral blood leukocytes were used as a target source of CFUc without first subjecting them to adherence separation, enhanced proliferation and differentiation of CFUc were noted in cultures that contained PMA. To investigate the possibility that CSA production by monocytes in these cultures in response to activation by PMA might account for the enhanced colony formation that we observed, we incubated isolated peripheral blood monocytes in short- term liquid suspension cultures and found that in the presence of PMA, large quantities of CSA were secreted into the surrounding medium. Finally, we noted that when marrow cell suspensions were suboptimally stimulated by low concentrations of CSA added to the cultures, the effects of PMA on CFUc proliferation were unpredictable, enhancing colony formation in some cases and inhibiting it in others. Our data indicate that although the tumor-promoting phorbol esters do not appear capable of directly stimulating the proliferation or differentiation of human CFUc in the absence of CSA, they may do so indirectly by causing auxiliary cells such as monocytes to secrete CSA.