Abstract
Previous reports have indicated that the nucleotide affinity analog 5′- p-fluorosulfonylbenzoyl adenosine (FSBA) at concentrations between 40 and 100 mumol/L and at times greater than 20 minutes covalently modifies a single protein component on the external platelet membrane surface and that adenosine diphosphate (ADP) protects against this reaction. That this protein is an ADP receptor linked to platelet activation is shown by FSBA inhibition of ADP-mediated platelet shape change, aggregation, and fibrinogen receptor exposure. In this report, further evidence for the interaction of FSBA with the ADP receptor on platelets is provided by the observation that FSBA at high concentrations (100 to 500 mumol/L) behaves as a weak agonist to produce platelet shape change within one minute as detected by spectroscopic assay and scanning electron microscopy with concomitant phosphorylation of the light chain of platelet myosin. The specificity of FSBA as an agonist is demonstrated by inhibition of FSBA-induced shape change by ATP and the covalent incorporation of SBA as well as the failure of 5′-fluorosulfonylbenozoyl guanosine (FSBG) to cause shape change. In contrast, incubation of platelets with low concentrations of [3H]-FSBA (40 mol/L) is not associated with stimulation of platelet shape change or myosin light chain phosphorylation.