Abstract
In this cooperative study, we explored the role of the carbohydrate moiety (CHO) of von Willebrand factor (vWF) in supporting platelet adhesion. Because of previous discrepant results, all purification steps and CHO modifications by various enzymes were critically evaluated. Under our conditions, CHO-modified vWF preparations contained less than 5% of the initial sialic acid ([Neu]-ase-vWF) and less than 45% ([Neu-Gal]-ase-vWF) or 21% ([Neu-Gal-eF]-ase-vWF) of the D-galactose. These preparations usually showed increased electrophoretic mobility but no significant loss of high-mol-wt multimers when proteolysis had been prevented. Some degree of proteolysis was noted in some carbohydrate-modified vWFs, but the degree of degradation observed did not correlate with the removal of D- galactose. Platelet adhesion to various matrices increased after removal of the terminal sialic acid ([Neu]-ase-vWF) and approximately 45% of the D-galactose ([Neu-Gal]-ase-vWF), but returned to normal values when greater than 70% of the total carbohydrate had been removed by endoglycosidase F [Neu-Gal-ef]-ase-vWF). These changes in reactivity were also reflected in the spontaneous aggregation in normal platelet- rich plasma (PRP) after CHO removal.