Abstract
We prepared murine monoclonal antibodies to porcine platelet membrane glycoprotein (GP) Ib and GP IIb/IIIa for further study of the porcine hemostatic mechanism. One monoclonal antibody, designated PP3–4C, blocked Ristocetin-induced platelet agglutination and caused 80% inhibition of Ristocetin-induced 125I-von Willebrand factor (vWF) binding to porcine platelets at a concentration of greater than or equal to 12 micrograms IgG/mL. PP3–4C did not affect adenosine diphosphate (ADP)- or collagen-induced platelet aggregation. Binding of 125I-Fab fragments of PP3–4C to platelets was saturable at 3.7 x 10(4) +/- 0.8 x 10(4) molecules per platelet. Another monoclonal antibody, designated PP3–3A, blocked ADP- or collagen-induced platelet aggregation at 6 micrograms IgG/mL. At a concentration of 10 micrograms IgG/mL, PP3–3A completely inhibited binding either of 125I-fibrinogen or of 125I-vWF to ADP-stimulated platelets. PP3–3A did not affect Ristocetin-induced platelet agglutination nor 125I-vWF binding to platelets in the presence of Ristocetin. Binding of 125I-Fab' fragments of PP3–3A to platelets was saturable at 9.8 x 10(4) +/- 1.2 x 10(4) molecules per platelet. PP3–4C antibody (anti-GP Ib) did not bind to human platelets; however, PP3–3A antibody (anti-GP IIb-IIIa) had partial cross-reactivity with human platelets. Immunoaffinity chromatography of solubilized surface-radiolabeled porcine platelets and subsequent sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis demonstrated that PP3–4C recognized a GP with an apparent molecular weight of 160,000 (nonreduced), and 140,000 (reduced). PP3–3A recognized GPs with apparent molecular weights of 130,000 and 80,000 (nonreduced), and 115,000 and 95,000 (reduced). These monoclonal antibodies to porcine platelet membrane GPs, which are structural and functional analogues of human GP Ib and GP IIb/IIIa, will be useful for in vitro and in vivo studies of the mammalian hemostatic mechanism.