Abstract
The erythrocyte membrane inhibitor of reactive lysis (MIRL) is an 18-Kd protein that controls complement-mediated hemolysis by restricting the activity of the membrane attack complex. MIRL expression on the erythrocytes of paroxysmal nocturnal hemoglobinuria (PNH) is abnormally low, and the greater susceptibility of PNH erythrocytes to complement is causally related to this deficiency. Inasmuch as other proteins that are deficient in PNH are anchored to the membrane through a glycosyl phosphatidylinositol moiety, studies were undertaken to determine if MIRL shares this structural feature. Normal human erythrocytes that had been radiolabeled with 125I were incubated with phosphatidylinositol- specific phospholipase C (PIPLC), and the supernate and the solubilized membrane proteins were immunoprecipitated using anti-MIRL antiserum. The MIRL that was specifically released into the supernate had an Mr of 19 Kd, while the MIRL that remained bound to the membrane had an Mr of 18 Kd. A quantitative assay showed that approximately 10% of erythrocyte MIRL was susceptible to PIPLC; however, treatment with PIPLC had no effect on either the electrophoretic mobility or the functional activity of purified MIRL. These studies show that the effects of PIPLC on MIRL are similar to those observed for other human erythrocyte membrane proteins that are anchored by a glycosyl phosphatidylinositol moiety.