Abstract
Deoxygenation-induced cation movements in sickle cells were inhibited 80% to 85% by the anion transport inhibitor, 4,4′-diisothiocyano- 2,2′disulfostilbene (DIDS). Morphologic sickling was not altered by DIDS treatment, demonstrating that morphologic sickling was not sufficient to produce cation leaks in sickle cells. DIDS inhibition of deoxygenation-induced cation flux was not affected when l- replaced Cl- , indicating that conductive anion movements did not limit cation flux in deoxygenated cells treated with DIDS. Inhibition was irreversible after preincubation with DIDS at 37 degrees C for 20 minutes, and was not affected by the oxygenation state of cells at the time of drug exposure. Sulfate self-exchange was inhibited at lower DIDS concentrations than was deoxygenation-induced flux. Incubation of cells with DIDS at 4 degrees C produced progressive blockade of sulfate exchange, but did not alter deoxygenation-induced cation fluxes. Other stilbene disulfonates, including compounds incapable of covalent reactions, also inhibited deoxygenation-induced cation movements, although several other inhibitors of anion exchange did not. Dissociation of the inhibition of anion exchange and deoxygenation- induced cation flux indicates that the DIDS effect on deoxygenation- induced cation movements does not involve the well-characterized stilbene binding site of the anion exchanger. These data provide evidence for a membrane constituent on the external surface of oxygenated sickle cells capable of interacting with DIDS to prevent the increase in cation permeability associated with sickling.