Abstract
Eosinophilia and eosinophil function are regulated by cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin- 3 (IL-3), and IL-5. We have investigated the modulatory role of GM-CSF and IL-3 on the platelet-activating factor (PAF)-, neutrophil- activating factor (NAF/IL-8)-, leukotriene B4 (LTB4)-, N-formyl- methionyl-leucyl-phenylalanine (FMLP)-, and human complement factor C5a- induced chemotaxis of eosinophils from normal individuals. These eosinophils show a chemotactic response toward PAF, LTB4, and C5a, but not to NAF/IL-8 and FMLP. Preincubation of the eosinophils with picomolar concentrations of GM-CSF caused a significant increase in the response toward LTB4 and induced a significant chemotactic response toward NAF/IL-8 and FMLP. Preincubation of the eosinophils with picomolar concentrations of IL-3 also induced a chemotactic response toward NAF/IL-8 and FMLP, and enhanced the PAF-induced chemotaxis response toward C5a was not influenced by both cytokines. Nanomolar concentrations of GM-CSF or IL-3 caused a significant inhibition of the C5a-induced chemotaxis. The LTB4-induced chemotaxis was also significantly inhibited in case of GM-CSF. At these concentrations both GM-CSF and IL-3 acted as chemotaxins for eosinophils were washed after pretreatment with GM-CSF and IL-3 the potentiation of the chemotactic response remained, whereas the inhibitory mode of action disappeared. Our data indicate that at picomolar concentrations the cytokines GM-CSF and IL-3 can modulate eosinophil chemotaxis and at nanomolar concentrations these cytokines can act as chemotaxins for eosinophils.