Abstract
We describe several novel analogs of the seco-steroid 1,25(OH)2-vitamin D3[1,25(OH)2D3] and their effects on differentiation and proliferation of HL-60 human myeloid leukemic cells in vitro as well as their effects on calcium metabolism in vivo. The 1 alpha-25(OH)2–16ene-23yne-26,27F6- vitamin D3 is the most potent analog reported to date, having about 80- fold more activity than the reference 1,25(OH)2D3 for inhibition of proliferation and induction of differentiation of HL-60 cells. Also, this analog decreased RNA expression of MYC oncogene in HL-60 by 90% at 5 x 10(-10) mol/L. Intriguingly, intestinal calcium absorption and bone calcium mobilization mediated in vivo by 1 alpha-25(OH)2–16ene-23yne- 26,27F6-D3 was found to be markedly (15-fold) less than that of 1,25(OH)2D3. In addition, 1 alpha-25(OH)2D3 bound to 1,25(OH)2D3 receptors of both HL-60 and intestine more avidly than did 1 alpha- 25(OH)2–16ene-23yne-26,27F6-D3. This novel analog may open up new therapeutic strategies for several hematopoietic, skin, and bone abnormalities and may provide a new tool to understand how vitamin D3 seco-steroids induce cellular differentiation.