Abstract
Blast colony-forming cells (BI-CFC) and pre-colony-forming unit- granulocyte, monocyte (CFU-GM) in human bone marrow bind to marrow- derived stromal layers grown in the presence of methylprednisolone (MP+), but do not bind to stroma grown without MP (MP-). The BI-CFC bind to stroma and form colonies when overlaid with agar; the pre-CFU- GM bind to stroma and release CFU-GM into the supernatant culture medium (delta assay). These two classes of progenitor may represent similar stages of hematopoietic cell development. Their binding to stroma depends on the presence of heparan sulfate proteoglycan (HS-PG) in the extracellular matrix secreted by the stromal cells. Here, we have analyzed the functional and biochemical properties of HS-PG isolated from MP+ and MP- stromal cultures. HS-PG or isolated HS glycosaminoglycan (GAG) side chains partially blocked progenitor cell binding when they were added to the 2-hour binding phase of the BI-CFC or delta assays. Gel electrophoresis of HS-PG resolved more bands in matrix preparations from MP+ cultures than in preparations from MP- cultures. The blocking activity of the eluted MP+ HS-PG bands depended partly on the amount of GAG attached to the protein core and presumably partly on the structure of the core itself. Time course studies demonstrated that the HS-dependent phase of the binding interaction was limited to the first 30 to 60 minutes of the 2-hour binding phase. The different blocking effects of MP+ and MP- HS indicate that they have different biochemical properties. The HS-GAG in MP+ stroma has a higher degree of sulfation and a greater negative charge to mass ratio compared with MP- HS-GAG. Variations in HS may determine specific binding by hematopoietic progenitor cells and a heparan sulfate receptor is envisaged as acting in concert with further cell adhesion molecules (CAMs) on the progenitor cell surface.