Abstract
AIC2A and AIC2B are closely related genes encoding components of the receptors for murine interleukin-3 (IL-3) (AIC2A) and granulocyte- macrophage colony-stimulating factor (GM-CSF) and IL-5 (AIC2B). We have studied the parallel regulation of expression of these genes in erythroid and myeloid progenitor cell lines. AIC2A and AIC2B transcription was transiently induced in these cells in response to a variety of hematopoietic growth factors, including erythropoietin (EPO), monocyte-CSF, IL-3, GM-CSF, and stem cell factor (SCF or kit ligand). Run-on assays established that the increase occurred mainly at the transcriptional level. Immunoprecipitation experiments confirmed that the increase in messenger RNA expression resulted in augmented synthesis of both AIC2A and AIC2B proteins, and binding studies further showed these proteins to be functional. We observed a fourfold increase in low-affinity IL-3 sites in an erythroid precursor cell line stimulated with EPO, and a threefold increase in GM-CSF high-affinity sites in a myeloid cell line stimulated with IL-3. In addition, we showed that the increase in the IL-3 receptor chain AIC2A in the erythroid precursor cell line correlated with the ability of IL-3 to exert a cooperative effect with EPO in the induction of beta-globin in these cells.