Abstract
Mouse hematopoietic stem cells can be identified and enriched from populations of normal bone marrow cells by immunofluorescent labeling of cell surface molecules followed by flow cytometric separation. We show here that the majority of hematopoietic stem cell activity, as defined by long-term competitive repopulation of irradiated animals and by a secondary transplant assay for spleen colony-forming units (CFU- S), could be localized in Ly-6b haplotype mice to a fraction of bone marrow cells that expresses the Ly-6A/E (Sca-1) molecule. Further, an analysis of hematopoietic stem cell activity in bone marrow of mouse strains expressing the Thy-1.1 allele indicated that the vast majority of activity was included in the Thy-1low population. In contrast, hematopoietic stem cell activity found in the bone marrow of Thy-1.2 genotype mouse strains was recovered in both the Thy-1neg and the Thy- 1low populations. However, similar to Thy-1.1 strains, most activity was localized to the Ly-6A/E+ population of cells. The difference in Thy-1 phenotype of hematopoietic stem cell activity apparent between Thy-1.1- and Thy-1.2-expressing mouse strains was not caused by differences in the staining intensity of monoclonal antibodies (MoAbs) specific for the Thy-1 alleles. Furthermore, an antiframework MoAb that stains both alleles of Thy-1 separated hematopoietic stem cell activity from mice expressing the two alleles in the same manner as did allele- specific MoAb. The results of this study show that Thy-1 expression is not an invariant characteristic of mouse hematopoietic stem cells, and that mice expressing the Thy-1.1 allele are unique in that hematopoietic stem cell activity is found exclusively in the Thy-1low population.