Abstract
We used enriched marrow cells from mice administered three doses of 150 mg/kg 5-fluorouracil (5-FU) 1, 3 and 7 days before they were killed to study the effects of different growth factors on the survival of primitive, cell-cycle dormant progenitors in culture. This cell population yielded substantially fewer colonies in response to single growth factors than corresponding preparations from day 2 post-5-FU bone marrow samples, and the majority of progenitors were multipotential in nature. These observations were consistent with the prediction that multiple cycles of 5-FU treatment would further enrich for primitive cells. With this cell population, we found that among all the factors tested, interleukin-3 (IL-3) and steel factor (SF) as single factors are the most effective in supporting survival of dormant primitive progenitors. Interleukin-6 (IL-6), granulocyte colony- stimulating factor (G-CSF), interleukin-11 (IL-11), interleukin-4 (IL- 4), interleukin-1 alpha (IL-1 alpha), and tumor necrosis factor-alpha (TNF-alpha) also supported survival of a few progenitors, but much less effectively than either IL-3 or SF. The hematopoietic progenitors that survived for 1 week in liquid culture supplemented with either IL-3 or SF retained the capability to develop pre-B-cell colonies in secondary culture. Our results demonstrate that survival of dormant murine lymphohematopoietic cells in culture is dependent on the presence of specific growth factors, and that this growth factor requirement can be satisfied well by SF or IL-3.