Abstract
Glycophorin A is a heavily glycosylated glycoprotein (1 N-linked and 15 O-linked oligosaccharides) and is highly expressed on the surface of human red blood cells. It is important in transfusion medicine because it carries several clinically relevant human blood group antigens. To study further the role of glycosylation in surface expression of this protein, four mutations were separately introduced into glycophorin A cDNA by site-directed mutagenesis. Each of these mutations blocks N- linked glycosylation at Asn26 of this glycoprotein by affecting the Asn- X-Ser/Thr acceptor sequence. Two of these mutations are identical to the amino acid polymorphisms found at position 28 in the Mi.I and Mi.II Miltenberger blood group antigens. The mutated recombinant glycoproteins were expressed in transfected wild-type and glycosylation- deficient Chinese hamster ovary (CHO) cells. When expressed in wild- type CHO cells and analyzed on Western blots, each of the four mutants had a faster electrophoretic mobility than wild-type glycophorin A, corresponding to a difference of approximately 4 Kd. This change is consistent with the absence of the N-linked oligosaccharide at Asn26. Each of the four mutants was highly expressed on the surface of CHO cells, confirming that, in the presence of normal O-linked glycosylation, the N-linked oligosaccharide is not necessary for cell surface expression of this glycoprotein. To examine the role of O- linked glycosylation in this process, the Mi.I mutant cDNA was transfected into the IdlD glycosylation-deficient CHO cell line. When the transfected IdlD cells were cultured in the presence of N- acetylgalactosamine alone, only intermediate levels of cell surface expression were seen for Mi.I mutant glycophorin A containing truncated O-linked oligosaccharides. In contrast, when cultured in the presence of galactose alone, or in the absence of both galactose and N- acetylgalactosamine, Mi.I mutant glycophorin A lacking both N-linked and O-linked oligosaccharides was not expressed at the cell surface. This extends previous results (Remaley et al, J Biol Chem 266:24176, 1991) showing that, in the absence of O-linked glycosylation, some types of N-linked glycosylation can support cell surface expression of glycophorin A. The glycophorin A mutants were also used for serologic testing with defined human antisera. These studies showed that the recombinant Mi.I and Mi.II glycoproteins appropriately bound anti-Vw and anti-Hut, respectively. They also demonstrated that these antibodies recognized the amino acid polymorphisms encoded by Mi.I and Mi.II rather than cryptic peptide antigens uncovered by the lack of N- linked glycosylation.