Abstract
The relative antithrombotic effectiveness of targeting glycoprotein (GP) Ib-dependent versus GPIIb-IIIa-dependent platelet interactions has been determined in baboons by measuring thrombus formation after infusing comparable antihemostatic doses of anti-von Willebrand factor (vWF) monoclonal antibody (MoAb) BB3-BD5, anti-GPIb MoAb AP1, and anti- GPIIb-IIIa MoAb LJ-CP8 under conditions of arterial and venous flow (shear rates of 750 to 1,000 seconds-1 and 100 seconds-1, respectively). Thrombus formation was quantified as 111In-platelet deposition and 125I-fibrin accumulation on segments of collagen-coated tubing interposed in chronic exteriorized arteriovenous (AV) shunts for 40 minutes. In vitro, anti-vWF MoAb BB3 BD5 (IgG) and anti-GPIb MoAb AP1 [IgG or F(ab)2 fragments] inhibited ristocetin-induced platelet aggregation (IC50 50 nmol/L and 1 mumol/L, respectively), but neither of these MoAbs blocked platelet aggregation induced by adenosine diphosphate (ADP) (P > .5). Conversely, anti-GPIIb-IIIa MoAb LJ-CP8 inhibited platelet aggregation induced by ADP (IC50 1 mumol/L, but failed to block ristocetin-induced platelet aggregation (P > .5). In vivo, the intravenous infusion of anti-vWF MoAb BB3 BD5 or anti-GPIIb- IIIa MoAb LJ-CP8 into baboons at doses that abolished corresponding agonist-induced aggregation ex vivo (bolus injections of 0.5 mg/kg and 10 mg/kg, respectively) prolonged template bleeding times from baseline values of 4.0 +/- 0.3 minutes to > 27 +/- 4 minutes, and to > 26 +/- 4 minutes, respectively (P 3 .001 in both cases), without affecting the peripheral platelet count (P > .5). However, injection of anti-GPIb MoAb AP1 [10 mg/kg as IgG or 1 mg/kg as F(ab)2 fragments] produced immediate irreversible thrombocytopenia (< 40,000 platelets/microL). Anti-GPIIb-IIIa MoAb LJ-CP8 abolished platelet deposition and fibrin accumulation on collagen segments under both arterial and venous flow conditions (P < .01 in all cases), whereas MoAb BB3 BD5 produced minimal inhibition of platelet deposition and no decrease in fibrin accumulation at arterial shear rates and undetectable antithrombotic outcomes at low shear. Thus, inhibiting GPIIb-IIIa-dependent platelet recruitment abrogates both thrombus formation and platelet hemostatic function at both venous and arterial shear rates. By contrast, interfering with GPIb-vWF-dependent platelet interactions abolishes platelet hemostatic function without producing corresponding antithrombotic effects.