Abstract
In suspensions of murine bone marrow, many stromal cells are tightly entwined with hematopoietic cells. These cellular aggregations appear to exist normally within the marrow. Previous studies showed that lymphocytes and stem cells adhered to stromal cells via vascular cell adhesion molecule 1 (VCAM1). Injection of anti-VCAM1 antibody into mice disrupts the aggregates, showing the importance of VCAM1 in the adhesion between stromal cells and hematopoietic cells in vivo. Early hematopoietic stem cells were shown to be enriched in aggregates by using a limiting-dilution culture assay. Myeloid progenitors responsive to WEHI-3CM in combination with stem cell factor (c-kit ligand) and B220- B-cell progenitors responsive to insulin-like growth factor-1 in combination with interleukin-7 are not enriched. We propose a scheme of stromal cell-hematopoietic cell interactions based on the cell types selectively retained within the aggregates. The existence of these aggregates as native elements of bone marrow organization presents a novel means to study in vivo stem cell-stromal cell interaction.