Abstract
Bone marrow (BM) stromal cell inhibition of leukemic cell differentiation was studied in cellular coculture experiments. In coculture, a significant percentage of cells from the human myeloid leukemic cell lines HL-60, PLB-985, and K562 adhere to fibroblastic KM- 102 BM stromal cells. A sensitive two-color immunofluorescence assay was developed to monitor stromal cellular effects upon leukemic cell differentiation. After chemical induction with 1 alpha,25- dihydroxyvitamin D3, strongly adherent HL-60 and PLB-985 cells were inhibited from differentiating into more mature monocytic cells, as measured by the monocytic surface marker CD14. In contrast, loosely adherent and nonadherent HL-60 and PLB-985 leukemic cells in the same cocultures, as well as both adherent and nonadherent K562 cells induced with phorbol ester, were not blocked in their capacity to differentiate. Scanning electron microscopy and intercellular dye transfer experiments correlated intimate stromal cell/leukemic cell interaction and intercellular communication with the blockade of leukemic cell differentiation. These studies indicate that there is significant variability among leukemic lines with respect to the nature of their adhesion to stromal cells. Moreover, the data implicate gap- junction formation as a potentially significant event in stromal cell- mediated leukemic cell regulation.