Abstract
To study the differentiation process of erythroid progenitors from normal human bone marrow and peripheral blood, CD34/CD36 sorted cells were cultured in the presence of Erythropoietin (Epo) and Epo plus mast cell growth factor (MGF). The CD34+/CD36- cell fraction from bone marrow supported 74 +/- 33 erythroid burst forming units (BFU-E)/10(4) cells (mean +/- SD, n = 4) in the presence of Epo, which increased 2.1- fold by coculturing with MGF. However, erythroid colony-forming units (CFU-E) were not cultured from the CD34+/CD36- cell fraction. In contrast, the CD34-/CD36+ cell fraction supported CFU-Es in the presence of Epo (152 +/- 115/10(5)) or Epo plus MGF (180 +/- 112/10(5)), whereas BFU-Es were hardly noticed. However, the transition of the BFu-E to CFU-E was observed by incubating CD34+/CD36- cells (10(4)/100 microL) in suspension with Epo plus MGF for 7 days followed by Epo in the colony assay. This was reflected by the appearance of CD34-/CD36+/Glycophorin A+/CD14- cells. In addition high numbers of CFU- Es (1,000 +/- 150, n = 4) were cultured from this cell fraction. In contrast to bone marrow erythroid progenitors, no peripheral blood CFU- Es were cultured from either the CD36+ or CD36- fraction, whereas BFU- Es were predominantly present in the CD36+ fraction. However, the CD34+ progenitor cell from peripheral blood did have intrinsic capacity to differentiate to CFU-Es because CD34+/CD36- cells incubated with Epo plus MGF for 7 days and followed by Epo in the colony assay, supported high numbers of CFU-Es (1,200 +/- 400, n = 3). To study whether additional growth factors have similar effects on erythroid progenitors, experiments were performed with interleukin 1 (IL-1), IL- 3, and IL-6. IL-1 and IL-6 did not modulate the Epo supported proliferation and differentiation. In contrast, IL-3 in the presence of Epo did support CFU-Es, from CD34+/CD36- cells after 7 days in suspension culture. However, flow cytometry analysis showed that Epo plus IL-3 not only supported CD34-/CD36+/Glycophorin A+ cells but also CD36+/CD14+ cells, indicating the differentiation along different cell lineages. In summary, the data show a phenotypic distinction between bone marrow and peripheral blood erythroid progenitors with regard to CD36 expression. In addition, the results suggest that Epo plus MGF or IL-3 and preincubation in suspension culture are prerequisites for the transition of the BFU-E to the CFU-E.