Abstract
The human myeloid cell line HL-60 expresses approximately 300 high- affinity granulocyte-macrophage colony-stimulating factor receptors (GM- CSFRs), yet treatment of these cells with GM-CSF does not result in enhanced cellular proliferation or increases in protein tyrosine phosphorylation. In contrast, GM-CSF induces rapid increases in protein tyrosine phosphorylation and proliferative responses in HL-60 cells pretreated for 3 days in dimethyl sulfoxide (DMSO). Similarly, HL-60 cells pretreated with retinoic acid or 1,25 dihydroxyvitamin D3 were also capable of responding to GM-CSF. Interestingly, each of these treatments resulted in increased expression of the src-like tyrosine kinase hck. Stimulation with GM-CSF increased hck autophosphorylation in DMSO-treated HL-60 cells, suggesting that hck is a component of the GM-CSF signal transduction pathway. To determine if hck has a role in the DMSO-induced recoupling of the GM-CSFR, we overexpressed hck in HL- 60 cells. The resulting cell line (HL-60/hck) expresses hck mRNA and protein at levels comparable with DMSO-treated HL-60 cells. Stimulation of HL-60/hck cells with GM-CSF results in activation of hck, increases in protein tyrosine phosphorylation, and increased proliferation. These results show that cytokine receptors can exist in an uncoupled form and suggest that in HL-60 cells, appropriate levels of the src-like tyrosine kinase hck are critical for functional coupling of the GM-CSFR to biologic responses.