Although it is well established that the addition of 1,25- dihydroxyvitamin D3 (D3) to the culture of normal human granulocyte/macrophage progenitors induces monocyte/macrophage (Mo/M phi) colonies, the target cells of D3 in the Mo/M phi differentiation have not been identified. We examined whether neutrophilic promyelocytes are the target cells. As a source of the promyelocyte fraction, we used colonies after 5 days of culture (5-day colonies) of colony-forming unit-granulocyte. The culture contained granulocyte colony-stimulating factor (G-CSF) as the growth factor and generated only neutrophilic colonies. The promyelocytic nature of the 5-day colonies was confirmed morphologically, cytochemically, and ultrastructurally. After morphological evaluation on part of the individual colonies, they were transferred into new semisolid cultures with or without D3 (10(-7) mol/L) in the presence of G-CSF, then incubated for the subsequent 7 days. With D3, the colonies were loose, and all the constituent cells were morphologically small macrophages, which were positive for alpha-naphthyl butyrate (alpha NB) esterase, strongly positive for CD14 antigen, and plastic-adherent. While without D3, the colonies were rather compact, and all the constituent cells were morphologically mature neutrophils, which were positive for naphthol ASD-chloroacetate esterase and weakly positive for CD14 antigen. Secondary culture of the 8- or 10-day colonies with D3 induced a lower number of alpha NB-positive cells, in proportion to the percentage of promyelocytes at the time of transfer in each colony. Four days of secondary culture with D3 was sufficient to induce alpha NB-positive cells. G-CSF was not an essential factor to induce alpha NB- positive cells. These findings indicate that D3 differentiates normal human neutrophilic promyelocytes into the Mo/M phi lineage in vitro.
ARTICLES|
April 1, 1996
1,25-dihydroxyvitamin D3 differentiates normal neutrophilic promyelocytes to monocytes/macrophages in vitro
K Nakamura,
K Nakamura
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
T Takahashi,
T Takahashi
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
Y Sasaki,
Y Sasaki
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
R Tsuyuoka,
R Tsuyuoka
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
Y Okuno,
Y Okuno
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
M Kurino,
M Kurino
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
K Ohmori,
K Ohmori
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
S Iho,
S Iho
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
K Nakao
K Nakao
College of Medical Technology, Kyoto University, Japan.
Search for other works by this author on:
Blood (1996) 87 (7): 2693–2701.
Citation
K Nakamura, T Takahashi, Y Sasaki, R Tsuyuoka, Y Okuno, M Kurino, K Ohmori, S Iho, K Nakao; 1,25-dihydroxyvitamin D3 differentiates normal neutrophilic promyelocytes to monocytes/macrophages in vitro. Blood 1996; 87 (7): 2693–2701. doi: https://doi.org/10.1182/blood.V87.7.2693.bloodjournal8772693
Download citation file: