Abstract
Human bone marrow (BM) cells contain low levels of the DNA repair protein, O6-alkylguanine-DNA alkyltransferase, which may explain their susceptibility to nitrosourea-induced cytotoxicity and the development of secondary leukemia after nitrosourea treatment. Isolated CD34+ myeloid progenitors were also found to have low levels of alkyltransferase activity. The level of alkyltransferase in CD34+ cells or in mononuclear BM cells did not increase after incubation with granulocyte-macrophage colony-stimulating factor, interleukin-3, stem cell factor, the combination, or 5637 conditioned medium. BCNU sensitivity remained unchanged as well. In addition, O6-benzylguanine depleted alkyltransferase activity in BM cells at concentrations as low as 1.5 mumol/L after a 1-hour exposure. O6-benzylguanine pretreatment markedly sensitized hematopoietic progenitor colony-forming cells to BCNU, resulting in a reduction in the dose of drug (termed the dose- modification factor) required to inhibit 50% of the colony formation (IC50) of threefold to fivefold. Since, unlike many other cell types, proliferating early (CD34+) hematopoietic precursors do not induce alkyltransferase, myelosuppression may be the dose-limiting toxicity of the combination of O6-benzylguanine plus BCNU in clinical trials.