Abstract
Defining factors and signals that establish and maintain the native nucleoprotein structure of endogenous chromatin domains represents a powerful approach for elucidating transcriptional mechanisms. In adult erythroid cells, the locus control region (LCR) and the adult beta-globin genes of the murine beta-globin locus are highly enriched in acetylated histones H3 and H4 (acH3, acH4) and H3 methylated at lysine 4 (H3-meK4). By contrast, the embryonic beta-globin genes reside in a broad region of reduced acetylation. Histone H3 methylated at lysine 79 (H3-meK79) is highly enriched at the adult beta-globin genes, but not at the LCR. To elucidate the molecular steps in beta-globin transcriptional activation, genetic complementation experiments were conducted in GATA-1-null G1E cells containing an estrogen receptor hormone binding domain-GATA-1 fusion protein (ER-GATA-1). Kinetic analysis of ER-GATA-1 occupancy of chromatin and establishment of the histone modification pattern by chromatin immunoprecipitation (ChIP) revealed that GATA-1 occupies multiple regions within the LCR prior to the beta-major promoter. Chromatin accessibility at the promoter was low until ER-GATA-1 assembled into regulatory complexes at the LCR. Subsequently, ER-GATA-1 accessed the beta-major promoter, induced acH3, RNA polymerase II (Pol II) recruitment, and elevated H3-meK79. Acquisition of transcriptional competence appears to require establishment of H3-meK4, which is GATA-1-independent. Blocking transcriptional elongation did not erase H3-meK79, indicating that maintenance of H3-meK79 does not require ongoing elongation. Analysis of N-terminal GATA-1 deletion mutants that retain Friend of GATA-1 (FOG-1) binding and DNA binding activities revealed that FOG-1 binding and DNA binding activities are insufficient for Pol II recruitment and chromatin modification at the promoter. These results support a model in which ER-GATA-1 binding to the LCR increases acH3 at the promoter as an early event in transcriptional activation, which is tightly coupled to ER-GATA-1 access to the promoter, increased promoter accessibility, and Pol II recruitment. Increased promoter accessibility, which likely permits ER-GATA-1 access to the promoter, precedes maximal induction of H3-meK79, a late event in activation. Given the dynamic regulation of H3-meK79 by GATA-1 and NF-E2 and the modulation of H3-meK79 levels during erythropoiesis, we propose that H3-meK79 is a crucial signal that controls the rate of beta-globin transcription. Studies are underway to test this hypothesis and to dissect mechanisms underlying the requirement of N-terminal sequences of GATA-1 for Pol II recruitment and chromatin modification. Furthermore, having identified individual steps in transcriptional activation of the endogenous beta-globin genes, we are testing whether inducers of human fetal hemoglobin affect these specific steps. GATA-1 has been reported by the Crispino group to be expressed as an N-terminally truncated species in megakaryoblastic leukemia. Defining how the N-terminus functions should therefore lead to a molecular understanding of this disorder. As the N-termini of GATA factors differ considerably, one might expect these divergent sequences to establish GATA factor-specific functions, and this prediction is being tested via detailed analysis of the activities of chimeric GATA factors.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal