Abstract
The immaturity of T cells in cord blood is well known in functional assays and phenotypic analyses. During the first several months after cord blood transplantation (CBT), the T cell compartment is recovered by peripheral expansion from those mature and naïve T cells in cord blood grafts and plays an important role in acute graft-versus-host disease (GVHD) and graft-versus-leukemia reaction. Recently, we have reported that adult patients with hematological malignancies receiving CBT from HLA-partially-mismatched unrelated donors (n=68) had a lower risk of severe acute GVHD (> grade II, 7% versus 26%) and transplant-related mortality (9% versus 29% at 1 year) and a higher probability of disease-free survival (74% versus 44% at 2 years) than HLA-matched unrelated bone marrow transplant (BMT) recipients (n=45) in our multivariate analysis (Takahashi et al., Blood, in press). We speculated that the immune reconstitution process over a period of several months after CBT might have contributed to these promising clinical results. Using four-color analysis with CD4, CD8, CD45RA, and CD62L, more than 90% of cord blood CD4+ and CD8+ T cells in the grafts belonged to the naïve fraction. Cytokine expression in cord blood T cells was also suppressed to 0.1% in CD4+ and to 0.9% in CD8+ with positive interferon-γ by intracellular staining, which were significantly lower than those in adult T cells (16.2% in CD4+ and 37.8% in CD8+). Circulating T cell counts normalized after 3 months for CD8+ and 4 months for CD4+ in our CBT recipients, both of which were significantly faster than in previously published studies, which were 9 months for CD8+ and 12 months for CD4+. After T cell recovery, peripheral blood T cells moved from the naïve to the central memory fraction immediately, and then moved to the effector memory fraction. A naïve subset of CD4+ T cells remained (median: 38 cells/μl on day 90, n=12) during the first 3 months, which was significantly higher than in the BMT control (median: 9 cells/μl on day 90, n=5, p=0.015), but showed a low level of CD8+ T cells (median: 14 cells/μl on day 90, n=12), almost the same as in BMT recipients (median: 13 cells/μl on day 90, n=5). Intracellular interferon-γ-producing T cells were detected at 3.4% (0.1–34.2%) in CD4+ and 32.3% (1.1–86.9%) in CD8+ at 1 month post-CBT (n=16), both of which were comparable to post-BMT. To investigate whether these T cells with memory phenotype are functional, we analyzed antigen-specific T-cell recovery using cytomegalovirus (CMV) as a specific antigen. CMV-responsive CD4+ T cells were detected within the first 4 months in all recipients with positive CMV antigenemia (n=13), but CD8+ T cells were detected only in 5 out of 13 cases, probably because of pre-emptive Gancyclovir administration in most antigenemia-positive patients. To conclude, naïve cord blood T cells rapidly increased in number and adopted a memory phenotype showing cytokine-production and antigen-recognition capacity in the early phase after CBT. These data suggest that mature T lymphocytes in cord blood have unique properties and contribute to the favorable clinical outcome of CBT.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal