Abstract
Mice deficient of the ETS-family transcription factor PU.1 lack B cells as well as macrophages. While most macrophage specific genes are known to be regulated by high levels of PU.1, the reason for the defect in B cell formation is not known. Here we analyzed a mouse strain in which a floxed version of the PU.1 gene, surrounding exon 4 and 5, which encode the DNA, binding and PEST domains (developed by C. Somoza and D. Tenen), was excised by Cre mediated recombination. As expected, this strain lacks both B cells and macrophages and die at birth. Surprisingly, however, we were able to establish lymphoid cell lines from fetal livers of these mice (day 14 to day 18), which proliferated on S17 stromal cells supplemented with IL-7 and stem cell factor. These cells expressed the B lineage cell surface markers CD19, CD43, BP-1 and CD24, but not B220. They also expressed B cell transcription factors, EBF, E47, Pax5, and their target genes, Rag1, IL7R, λ5 and v-preB, as detected by RT-PCR, exhibited DJ and VDJ immunoglobulin heavy chain rearrangements, and expressed IgM after IL-7 withdrawal. We then tested the effect of PU.1 deletion in B cells in adult animals by crossing the floxed PU.1 strain with a CD19 Cre mouse line. The spleen and peripheral blood (but not bone marrow) of these mice contained B cells that were CD19+ IgMlow, IgDhigh but B220 negative and instead expressed CD43. Thus PU.1 is not essential for immunoglobulin production and late B cell development. Although PU.1−/− fetal liver cells can give rise to cells, resembling Pre-B in vitro, the process of B cell formation was delayed by almost 12 days, compared with wt fetal liver, and the efficiency was reduced approximately 25-fold. In addition, PU.1 deficient B cells demonstrated an impaired ability to engraft into the bone marrow, when injected into irradiated SCID mice. We have found that PU.1 deficient B progenitors showed reduced or undetectable levels of the SDF1 receptor CXCR4, a receptor that has been implicated in B cell homing. Taken together, our observations suggest that PU.1 plays two different roles during B cell development: for early B cell formation and for proper migration and engraftment, which might be mediated through regulation of CXCR4 expression.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal