Abstract
Stem cells are intimately associated in-vivo with discrete niches within the 3-dimensional (3-D) bone marrow micro-environment collectively provide molecular signals that mediate their differentiation and self-renewal. A recently developed Plug-Flow Bioreactor System (PluriXTM), which closely mimics the physiological bone marrow environment by combining 3-D stromal cultures with a continuous flow system, is capable of supporting long term maintenance/expansion of transplantable human HSC.
The stroma cells, growing inside the PluriXTM bioreactor on porrosive carriers enable the propagation of high density (>100-fold input) 3-D stroma cell cultures for prolonged periods of time. Within 40 days, the number of primary human stroma cells seeded in the bioreactor at a density of 5*104 cells/ml reached 1.5*106 cells/ml and the stroma cell lines reached a density of 5*107–1*108 cells/ml. Three-dimensional static stroma HSC co-cultures were found to be superior to 2-D co-cultures in supporting the maintenance of CB HSC and early hematopoietic progenitors.
When cord blood CD34+ cells were seeded on 2-D & 3-D stroma cell static cultures, the 3-D stroma cultures proved superior in supporting the growth of CD34+, CD34+38− and CD34+38−CXCR4+ cells. The 3-D primary human stroma static cultures supported these cells 4.7, 22, 7.4 fold better than the 2-D cultures, respectively.
The CD34+ cells seeded on the high-density 3-D stroma cell cultures within the PluriXTM bioreactor demonstrated significant superiority to 2-D and 3-D stroma cell static cultures and 2-D stroma cultures in supporting the growth and expansion of HSC and earlier hematopoietic progenitors.
These findings verify that a system based on 3-D stroma co-cultures is preferable for ex-vivo expansion of human HSC’s. The PluriXTM system offers wide-range potential for expansion of stem cells from cord blood and production of specific blood products.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal