Abstract
Program death-1 (PD-1) is a negative regulator of the immune system. Blocking PD-1-mediated negative signaling accelerates autoimmune diseases, while engaging PD-1 with recombinant PD-L1Ig fusion protein potentiates the efficacy of co-stimulation blockade in prolonging allograft survival. However, soluble PD-L1Ig itself showed no graft-protecting effect, in contrast to its strong inhibition of T and B cell activation in vitro when applied in a plate-bound form. In this study, we tested the hypothesis that membrane-bound PD-L1 should prolong allograft survival due to its increased ability to crosslink PD-1 receptor. An adenovirus (Ad.PD-L1) was constructed to encode the full-length mPD-L1, followed by green fluorescent protein (GFP) gene linked by an IRES sequence. A control adenovirus (Ad.Ctrl) was similarly constructed that carries only the GFP gene. In islet transplant model, B6AF1 (H-2b/a) islets were infected with the adenoviruses, and then transplanted into C57BL/6 (H-2b) mice induced diabetic by streptozotocin. In heart transplant model, DBA/2 (H-2d) hearts were perfused with adenoviruses, and then transplanted into C57BL/6 mice. PD-L1 over-expression in islet did not prolong graft survival, but accelerated islet rejection (Ad.PD-L1: 9.0+/−3.5 days; Ad.Ctrl: 13.3+/−2.2 days). In contrast, infection with Ad.PD-L1 prolonged heart allograft survival (15.4+/−5.7 days) in C57BL/6 mice, which promptly rejected DBA/2 hearts (7.0+/−2.3 days, p<0.02). Thus, over-expression of membrane-bound PD-L1 has beneficial effect in an organ/tissue specific manner. Strategies other than direct expression of PD-L1 in the islet b cells need to be devised in order to utilize this negative pathway to prevent rejection.
(Supported by JDRF fellowship 3–2002–92).
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal