Abstract
The Philadephia chromosome (Ph1) translocation results in the formation of the BCR-ABL oncogene in over 95% patients with chronic myeloid leukemia (CML). VEGF levels are elevated both in the plasma of CML patients and in conditioned media taken from CML cells. Therefore, simultaneous targeting of BCR-ABL and VEGF might be a rational strategy for attempting treatment of Philadephia1 leukemia. To test this hypothesis, we used an antisense strategy to downregulate BCR-ABL and VEGF expression in K562 cells, a human erythroleukemia cell line. In vitro, combination of bcr/abl and VEGF antisense oligodeoxyribonucleotides (AS-ODNs) exerted a specific synergistic antiproliferative effect on K562 cells and prominently sensitized K562 cells to apoptosis-inducing stimuli. In vivo, nude mice injected with K562 cells were treated systemically with BCR-ABL or VEGF AS-ODNs or with both ODNs in combination. In comparison with the mice treated with individual agents, the mice treated with both ODNs showed a slower growth of leukemia tumors, a reduction of microvessel density and an increased apoptosis in the tumors. These results demonstrate that targeting both BCR-ABL and VEGF may represent an excellent strategy to overcome the resistance to chemotherapeutic agents and ultimately to augment the efficacy of chemotherapy in CML.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal