Abstract
Objectives: This study examines the role of pericardial wound monocytes in thrombin generation during clinical cardiac surgery with cardiopulmonary bypass (CPB).
Background: The mechanism by which wound mononuclear cells rapidly express procoagulant activity is unexplained.
Methods: Factor VII activation (FVIIa) was measured using recombinant, truncated, soluble tissue factor (rsTF) and various blood cells in vitro. FVIIa was also measured with monocytes and soluble plasma tissue factor taken before CPB and simultaneously from the pericardial wound and perfusion circuit during CPB in thirteen patients.
Results: RsTF in combination with monocytes, but not platelets, neutrophils or red cells, accelerates activation of FVII beginning at 1 pmole/L rsTF. Less than 1% rsTF is bound, yet catalytic activity peaks at 7 minutes and decays afterwards. In wound plasma, monocytes are activated (MCP-1 = 29.5 ± 2.1 pmoles/L) and wound plasma tissue factor (wpTF) is substantially elevated (3.64 ± 0.45 pmoles/L) with 81.7% in the supernatant and 18.3% in microparticles. By Western blot all forms of plasma TF migrate at Mr 65 kDa [TF/FVII(FVIIa) complex]. Wound monocytes and C5a activated prebypass or perfusate monocytes plus wpTF convert all available FVII to FVIIa. Activated monocytes plus supernatant TF/FVII(VIIa) more efficiently activate factor X than microparticle TF/FVII(FVIIa). The correlation coefficient (r) between wound thrombin generation (F1.2) and wpTF is 0.944 (p = 0.0004).
Conclusions: During clinical cardiac surgery with CPB wound monocytes plus wpTF or microparticle-free, protein fragments of wound tissue factor preferentially accelerate activation of FVII and FX. This system represents a new mechanism of thrombin generation.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal