Abstract
Objective: To investigate the immunoregulatory effects of allogeneic mixed chimerism induced by T-cell depleted, nonmyeloablative bone marrow transplantation (TCD-NMT) on chronic inflammatory arthritis and autoimmunity developed in interleukin-1 receptor antagonist-deficient (IL-1Ra−/ −) mice.
Methods: IL-1Ra−/ − mice (H-2kd) were treated with anti-asialoGM1 Ab, TBI 500 cGy, and TCD-NMT from C57BL/6 mice (H-2kb). Engraftment and chimerism were evaluated on peripheral blood (PB), lymph node, and spleen by multi-color flow cytometry. The severity of arthritis was evaluated by clinical score and histopathology. IgG1 and IgG2a subtype of anti-type II collagen (CII) were measured in PB samples. After T cells were stimulated with CII, ovalbumin, and phytohemagglutinin, T-cell proliferation response and cytokines production (INF-g, TNF-a, IL-10, and IL-17) in culture supernatant were assayed.
Results: All the transplanted IL-1Ra mice showed marked improvement of arthritis within 3 weeks after transplantation as well as successful induction of mixed chimerism. Mice in mixed chimerism showed higher level of anti-CII IgG1 and lower level of anti-CII IgG2a and weaker T cell proliferative response than in control groups, such as no-treatment and conditioning only without BM rescue. In mixed chimera, INF-g, TNF-a and IL-17 production from CII-stimulated T cells was significantly suppressed and IL-10 production was significantly increased as compared to the control groups.
Conclusion: These observations indicate that the introduction of allogeneic mixed chimerism has a strong immunoregulatroy potential to correct established chronic inflammatory arthritis and autoimmunity originating from dysregulated proinflammatory cytokine network.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal