Abstract
The suppressors of cytokine signaling (SOCS) are critically involved in the regulation of cellular proliferation, survival, and apoptosis via cytokine-induced JAK/STAT signaling. SOCS-1 silencing by aberrant DNA methylation contributes to oncogenesis in various B-cell neoplasias and carcinomas. Recently, we showed an alternative loss of SOCS-1 function due to deleterious SOCS-1 mutations in a major subset of primary mediastinal B-cell lymphoma (PMBL) and in the PMBL line MedB-1, and a biallelic SOCS-1 deletion in PMBL line Karpas1106P (
BLOOD, 105, 2535–42, 2005
). For both cell lines our previous data demonstrated retarded JAK2 degradation and sustained phospho-JAK2 action leading to enhanced DNA binding of phospho-STAT5. Here we analysed SOCS-1 in laser-microdissected Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL). We detected SOCS-1 mutations in HRS cells of eight of 19 cHL samples and in three of five Hodgkin lymphoma (HL)-derived cell lines by sequencing analysis. Moreover, we found a significant association between mutated SOCS-1 of isolated HRS cells and nuclear phospho-STAT5 accumulation in HRS cells of cHL tumor tissue (p<0.01). Collectively, these findings support the concept that PMBL and cHL share many overlapping features, and that defective tumor suppressor gene SOCS-1 triggers an oncogenic pathway operative in both lymphomas.Author notes
Corresponding author
2005, The American Society of Hematology
2005
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal