Abstract
Fetal liver hematopoiesis is primarily erythropoiesis, which robustly produces erythrocytes to meet the growing need of the developing embryo. In many ways fetal liver erythropoiesis resembles stress erythropoiesis in the adult, where in response to acute anemia, a unique population of stress erythroid progenitors is rapidly expanded in the spleen. The development of these stress progenitors requires BMP4/Madh5 dependent signals. Spleen stress progenitors exhibit properties that are distinct from bone marrow steady state progenitors in that they are able to rapidly form large BFU-E colonies, which require only Epo stimulation for their generation. Mice mutant at the flexed-tail locus exhibit a defective stress erythroid response because of a mutation in Madh5. In addition to this defect, flexed-tail mice also exhibit a severe fetal-neonatal anemia. We have analyzed fetal liver erythropoiesis in flexed-tail and control embryos. We show that BMP4 is expressed in the fetal liver and its expression correlates with the time of maximum erythropoiesis. In flexed-tail mutant embryos the expression is delayed and this correlates with both a delay and a defect in the expansion of erythroid progenitors. Our analysis also shows that the fetal liver contains two types of erythroid progenitors. One type exhibits the properties of stress BFU-E found in the adult spleen, which are compromised in flexed-tail embryos and a second type that is similar to bone marrow steady state BFU-E. These data demonstrate that BMP4 dependent signaling drives the expansion of erythroid progenitors in the fetal liver in a manner similar to stress erythropoiesis in the adult spleen.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal