Abstract
The interplay between the stroma and hematopoietic progenitors within the bone marrow niche is critical for the homeostatic regulation of both mesenchymal and blood lineages. Gap junctions play an important role in the communication between hematopoietic supportive cells of the fetal liver and bone marrow stroma. Targeted deletion of the gap junction protein Gja1 (connexin 43) demonstrated a requirement of Gja1 for placental and cardiac function leading to neonatal lethality. Surprisingly, Gja-1 heterozygous animals demonstrated no steady state hematopoietic defects, suggesting that either Gja-1 is not critical for hematopoietic stromal cell communication or that Gja-1 hemizygosity does not functionally alter gap junctions. We have identified an N-ethyl-N-nitrosourea (ENU)-induced strain (Gja1JRT) with a dominant negative mutation in Gja1 which phenocopies the human autosomal dominant disorder oculodentodigital dysplasia (ODDD). ODDD is characterized by a variety of developmental abnormalities including syndactyly, enamel hypoplasia, craniofacial abnormalities and cardiac dysfunction. In addition to these phenotypes, Gja-1JRT mice exhibit decreased bone mass and mechanical strength as well as alterations in hematopoietic progenitor frequencies, abnormalities not previously reported in human ODDD patients (
Disclosure: No relevant conflicts of interest to declare.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal