Abstract
Activating mutations of the Ras genes occur at high frequency in acute myeloid leukemia (AML). We have previously shown that expression of mutant N-ras(N-rasm) in murine hematopoietic stem cells is sufficient to induce a myeloid malignancy that resembles human AML(Mackenzie et al. Blood, 1999, 93, 2043–2056). In a ’humanised’ NOD/SCID mouse model N-rasm induced a pre-leukemic condition characterised by myeloid proliferation of human hematopoietic progenitor cells in the bone marrow of recipient mice (Shen et al. Exp. Hematol., 2004, 32: 852–860). Even though Ras usually acts as a dominant transforming oncogene, in primary cells and some cancer cell lines, Ras inhibits cell growth. We have previously shown that ectopic expression of N-rasm in leukemia U937 and K562 cells leads to growth suppression (Passioura et al. Cancer Res. 2005, 65, 797–804). The expression profile induced by N-rasm in these cells included the up-regulation of transcription factor Interferon Regulatory Factor1 (IRF1) and activation of cdk inhibitor p21WAF. IRF1 was previously defined as a tumour suppressor, and as such is a target of oncogenic mutations in AML. Antisense suppression of IRF1 prevented N-rasm induced growth suppression and up-regulation of p21WAF1. These results defined a novel tumour suppressive response to oncogenic N-rasm in leukemia cells. A retroviral cDNA library screen for genes that counteract N-rasm-induced growth suppression identified the gene for the Interferon Regulatory Factor2 (IRF2), and as confirmation of the screen, over-expression of IRF2 in leukemia U937 cells acted to inhibit N-rasm-induced growth suppression (
Disclosure: No relevant conflicts of interest to declare.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal