Conventional techniques for assessing drug response and apoptosis induction rely on static assessment of cellular changes at predetermined time points (e.g. detection of exposed membrane phospholipids by Annexin V). The Kinetics of Optical Response assay (KOR) is a new technique that detects induction of apoptosis dynamically. It employs a spectrophotometric methodology to detect changes in optical density associated with membrane blebbing related to growth and death, allowing detection of apoptosis in real time. The KOR assay has already predicted the response to cytotoxic agents of AML cell lines and primary samples. This study uses the KOR assay in lymphoid malignancy and shows sensitivity to apoptosis induction by conventional and novel agents including bortezomib. The lymphoma cell line DOHH2 (t(14;18)), U266 (myeloma), K562 (CML) and primary CLL cells were used in this study with HL60 (AML) as a control. Cells were seeded in 96 well plates and treated with a variety of drugs alone or in combination (cytarabine, fludarabine, doxorubicin, daunorubicin, etoposide, melphalan, bortezomib) at multiple concentrations. Measurements were made at 5 min. intervals for up to 48 hrs and analysed using KORSoft™ software to generate apoptotic response curves. To validate this approach conventional techniques were used for comparison (Alamar Blue for cytotoxicity and flow cytometric analysis of cell cycle and apoptosis using propidium iodide and Annexin V staining respectively). The KOR assay can show changes in growth characteristics, induction of apoptosis and necrosis in response to drugs permitting a continuous analysis for maximum sensitivity (Smax). DOHH2 was found to be dose responsive to four of the drugs used, with the Smax for 10μM daunorubicin at 6 hours (48%), 1μM doxorubicin at 8 hours (38%), 100μM etoposide at 8 hours (52%), and minimally to 100μM cytarabine at 16 hours (21%). There was no effect from fludarabine. The addition of bortezomib increased Smax to 89% with etoposide and to a lesser degree with the other cytotoxic drugs. U266 showed a similar spectrum of results with greatest Smax with 100μM melphalan at 9 hours (57%) enhanced to 78% with the addition of bortezomib. There was minimal response to cytarabine and fludarabine. Parallel flow cytometric analysis using Annexin V and PI showed similar results to those from the KOR assay confirming the assessment of apoptosis to be valid. Cell cycle analysis showed an increased sub-G1 peak in keeping with apoptosis at times of Smax assessed by the KOR assay. The Alamar Blue cytotoxicity assay showed a dose dependent decrease in cell proliferation in response to increasing drug dose again paralleling other apoptosis measurements implying an apoptotic effect due to drug action and correlate well with those from the KOR assay. Primary CLL samples following CD19 selection were cultured with and without IL4 and exposed to the KOR assay with cytotoxics and bortezomib. Culture with IL4 alone gave good growth characteristics and revealed the combination of etoposide and bortezomib to provide the best induction of apoptosis (Smax 82%) compared to etoposide (26%) or bortezomib (32%) alone. The KOR assay is a microtitre approach to the assessment in real time of apoptosis. This study suggests the combination of bortezomib and etoposide is effective for lymphoma. Such approaches can accelerate the development of effective clinical trials.

Disclosures: Siroos Mehdi Zadeh, Dean Zhang and W David Hankins are employees of Bio-Kinetic Profiling Ltd.; Siroos Mehdi Zadeh and W. David Hankins hold stock in Bio-Kinetic Profiling Ltd.; Unrestricted educational grant paid by Bio-Kinetic Profiling to FE Cotter.; Siroos Mehdi Zadeh and W. David Hankins are members of the board of Bio-Kinetic Profiling.

Author notes

*

Corresponding author

Sign in via your Institution