Abstract
Gene therapy is a promising approach for the therapy of hereditary diseases, but after the occurrence of adverse side effects in a SCID-X1 gene therapy trial increased biological safety has become a major goal of gene therapy. A reduction of the number of transplanted cells could help achieve this goal by reducing the statistical likelihood of insertional mutagenesis simply by simply reducing the number of transplanted cells carrying potentially untoward insertion sites. As we have previously shown, incorporation of the selectable marker gene MGMT P140K into a retroviral vector allows a reduced intensity and toxicity in vivo selection of low numbers of genetically modified hematopoietic cells by chemotherapy with O6-benzylguanine (O6BG) and nitrosourea drugs such as 1,3-bis-2 chloroethyl-1-nitrosourea (BCNU). However, it is still not known whether extended selection over longer periods of time influences the long-term proliferation and differentiation capacity of murine haematopoietic stem cells. To address this question, serial transplantations of murine MGMT-P140K-expressing hematopoiesis combined with repeated administrations of O6-BG and BCNU were performed. After ex vivo gene transfer of a MGMT/IRES/eGFP-encoding retroviral vector, bone marrow cells were transplanted into syngeneic C57 BL/6J mice and serially transplanted. First, 2nd and 3rd generation recipient mice were subsequently treated every four weeks in order to amplify treatment effects on the long-term clonal behaviour of modified hematopoietic stem cells. Lineage contribution of transduced hematopoiesis was monitored by FACS over a total of 17 rounds of selection and clonality was monitored by LAM-PCR over a total of 16 rounds of selection. In primary mice, the percentage of transduced blood cells increased from 4.7 ± 0.8 % to 36.4 ± 9.8 % (n=12) and in secondary mice from 29.9 ± 7.2 % to 65.1 ± 8.7 % (n=18) after selection without inducing persistent peripheral blood cytopenia. Lineage analysis showed an unchanged multilineage differentiation potential in the transduced compared to control cells in 1st and 2nd generation animals. LAM PCR analysis of peripheral blood revealed stable oligo- to polyclonal hematopoiesis in 1st, 2nd and 3rd generation mice. Evidence of predominant clones or clonal exhaustion was not observed despite of up to 16 rounds of BCNU/O6-BG treatment. Interestingly, pairs of secondary transplanted mice which had received bone marrow cells from identical donors showed very similar clonal composition, engraftment kinetics under selection and lineage contribution of the transduced hematopoiesis. This is molecular proof that extensive self-renewal of transplantable stem cells had occurred in the primary mice resulting in a net symmetric refilling of the stem cell compartment. In summary, we demonstrate that even extended selection of MGMT-P140K-expressing hematopoietic stem cells by repetitive chemotherapy does not affect differentiation or proliferation potential and does not result in clonal exhaustion. Our results have important implications for the clinical use of MGMT selection strategies intending to employ amplification of a limited number of genetically modified clones in clinical gene therapy.
Disclosures: This work was partially supported by the European Union (Sixth Framework Programmes, CONSERT, Grant 005242), by the Deutsche Forschungsgemeinschaft (Grant KA976/5-3) and by the Deutsche Krebshilfe (Grant 10-1860-GI I).
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal