Abstract
Multiparameter flow cytometry is a useful tool for comprehensive immunophenotyping of plasma cell myeloma, and has been proposed as a sensitive method for the evaluation of minimal residual disease in patients following treatment. This study aimed to assess the value of flow cytometry in quantitation of residual disease, in comparison to routine morphologic examination of first-pull bone marrow aspirate smears, in myeloma patients post-therapy. Heparinized bone marrow aspirates were obtained from 27 treated patients with plasma cell myeloma. Cells were prepared for 5-color flow cytometric analysis within 24-hours of specimen draw. Surface membrane staining with anti-CD19, CD20, CD38, CD45, CD56, and CD138 was followed by ammonium chloride lysis of red cells. Fixed and permeabilized cells were analyzed for cytoplasmic light chains to confirm clonality. Data were acquired using an FC500 flow cytometer (Beckman-Coulter), analyzed with CXP software with plasma cells isolated based on bright CD38+ or CD138+ expression. A median of 97,639 cellular events (range 14,279 to 262,508) were collected per analysis. Flow cytometric enumeration of plasma cells was compared to 500-cell differential counts of Wright-Giemsa-stained first-pull aspirate smears from the same cases. The median plasma cell count as determined by flow cytometry was 0.5% (range 0–7.9%). The median plasma cell count estimated by morphologic review was 8.0% (range 0–84.4%). Flow cytometry underestimated the plasma cell content in all but one case. Clonal plasma cells expressed CD38 and CD138 in all cases; 87.5% (21/24) coexpressed CD56, 25% (6/24) coexpressed CD45, and 4.2% (1/24) coexpressed CD19. None was positive for CD20. Although detection of minimal residual disease after therapy for acute leukemia is routinely achieved by flow cytometric analysis, successful quantitation of minimal residual disease in treated myeloma patients using flow cytometry remains limited as it usually underestimates the plasma cell content of bone marrow samples compared to routine morphology of first-pull aspirates. We have observed that this holds true for both pre-treatment and post-treatment specimens. Causes for the discrepancy may include hemodilution of second-pull aspirates used for flow cytometry, fragility and loss of plasma cells during preparation for flow cytometry, and incomplete disaggregation of plasma cells from bone marrow spicules. With improved outcome of treatments, better and more reliable methods of detection of minimal residual disease are needed for optimal prognostic stratification. We are currently validating alternative methods, which may offer more sensitivity while at the same time allow more objectivity, for assessing the amount of minimal residual disease in myeloma patients.
Disclosure: No relevant conflicts of interest to declare.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal