Abstract
Multiple myeloma is a clonal lymphoproliferative disorder characterised by the proliferation of plasma cells in the bone marrow. Inspite of good initial response, it is associated with universal relapse. We hypothesise this is due to sanctuary provided to myeloma cells by the endothelium. Matrix metalloproteinases (MMPs) are shown play a role in cell growth, invasion, angiogenesis, metastasis and bone degradation. We show here the protection offered by endothelial cells to human myeloma cell lines in in-vitro co-culture with upregulation of MMP-2 & 9 and the role of GM6001 MMP inhibitor (Ilomastat) in overcoming this protection.
Human myeloma cell lines (H929, RPMI 8226, U266 & JJN3) with or without endothelial cells (human umbilical vein endothelial cells and EaHy 926 cell line) in-vitro co-culture were treated with melphalan, dexamethasone, arsenic trioxide and Ilomastat. Cytotoxicity/proliferation were assessed by the alamarBlue™ assay (Serotec) and validated by Annexin V-FITC apoptosis detection Kit (Calbiochem) and BrDU proliferation assay (BD Pharmingen™). Gelatin Zymography was used to demonstrate activity of MMP-2 & 9 in the supernatant. MMP-2 and 9 mRNA expression was quantified by Real Time Quantitative PCR (ROCHE).
Co-culture of human myeloma cell lines with endothelial cells lead to increase in the proliferation of myeloma cell lines and also protected them from the cytotoxicity of chemotherapeutic agents. MMP-2 & 9 activity was upregulated by the co-culture. MMP-2 mRNA expression in human myeloma cell lines increased following 4 hr co-culture. Treatments with Ilomastat lead to the suppression of proliferation in co-culture in a dose dependent manner, associated with a reduction of MMP-2 and 9 activity. Our study shows endothelial cells offer protection to human myeloma cell lines in the presence of cytotoxic agents. This may result in the sanctuary of myeloma cells in bone marrow leading to ultimate relapse of disease. Our study also demonstrates the upregulation of MMP-2 and 9 by co-culture and increased cytotoxicity achieved by the inhibition of MMPs. Further studies are needed to determine the exact role of MMPs in myeloma biology as MMP inhibition may be an interesting therapeutic target and help in averting relapse in multiple myeloma.
Disclosure: No relevant conflicts of interest to declare.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal