Abstract
Infections with cytomegalovirus are still a major clinical problem in immunosuppressed patients e.g. after bone marrow or stem cell transplantation. To prevent clinical overt disease resulting from disseminated virus infection, immunoprophylaxis and/or -therapy are considered a major goal. The humoral immune response contributes to immune protection against CMV by providing neutralizing antibodies. However, in the early phase after transplantation a primary immune response is not possible. Humoral anti-CMV immune effector functions can only be provided by memory B cells. The activation requirements for resting memory B cells are unclear. Using non-infectious hCMV particles in mice we have recently shown that activation of virus-specific memory B cells to secrete IgG is independent of cognate or bystander T cell help. To analyze whether transfer of memory B cells into immunodeficient mice can protect from lethal infection we switched to an infectious animal model using mCMV. When memory B cells from mCMV-infected mice were adoptively transferred into RAG-1−/− mice, a strong IgG anti-mCMV titer developed within 4–6 days after infection with mCMV. Virus dissemination and subsequent disease was inhibited. A 100–1000 fold decrease of virus titers and a 1.000–10.000 fold decrease of viral DNA load in spleen and lung was observed in mice that received mCMV specific memory B cells. Even in an established mCMV infection virus dissemination and subsequent disease could be prevented by means of adoptive memory B cell transfer. In further experiments we also used a virus mutant that cannot be controlled by NK cells in C57Bl/6 mice. Even in this experimental system we could demonstrate that adoptive transfer of memory B cells in the absence CD4 and CD8 cells is sufficient to protect from viral dissemination and rapid lethality. Our results show that memory B cells can mediate protection against mCMV in the absence of cognate or bystander T cell help. Similar regimens might be a therapeutic option for CMV reactivation after bone marrow transplantation in patients.
Disclosure: No relevant conflicts of interest to declare.
Supported by DFG through SFB 643.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal