Abstract
Mice harboring c-Myb hypomorphic mutations display enhanced thrombopoiesis because of increased numbers of megakaryocytic progenitors (CFU-MK) and mature megakaryocytes (MK). Thrombopoietin (Tpo), the primary regulator of megakaryopoiesis, induces these same effects, which lead us to hypothesize that Tpo might act, at least in part, through modulation of c-Myb expression. We found using quantitative (Q)-PCR that c-Myb mRNA levels were 13-fold reduced during Tpo-induced MK maturation. Micro RNAs (miRs) are ∼22 nucleotide species that down-regulate gene expression by binding to the 3′ untranslated region (UTR) of specific mRNAs, enhancing mRNA degradation, or by reducing mRNA translation efficiency. We noted that the 3′UTR of c-Myb contains a number of miR target sites, including four that bind miR150; using a specific Q-PCR assay we also found that Tpo increased mir-150 expression to 160% of baseline at 24 hr and 250% at 48 hr in UT7/TPO cells (n=2 experiments). To test if miR150 affects c-Myb expression, we introduced the 3′UTR of c-Myb into a luciferase reporter gene (pCMV-luc-3′UTRcMyb), in which CMV promoter-driven luciferase activity would reflect the stability of the 3′UTR of c-Myb, and allow us to test the effects of miR150 on c-Myb expression in transduced cells; Q-PCR and western blotting were used to simultaneously assess endogenous c-Myb mRNA and protein levels in the cells treated with miR-150 and anti-miR-150, and their respective controls (Ambion, ABI). Co-transfection of UT7/TPO cells with pCMV-luc-3′UTRcMyb and miR-150 significantly down-regulated luciferase activity to 40% of baseline 24 hr following transfection (p = 0.035; n=2 experiments) compared to a miR negative control. Luciferase activity in cells transfected with a control luc plasmid lacking the 3′UTR of c-Myb was not modulated by introduction of miR-150. Q-PCR analysis revealed that endogenous c-Myb mRNA was significantly down-regulated to 60% of baseline upon transfection of miR-150 compared to the negative control (p = 0.043), while the essential megakaryocytic transcription factor, AML1/RUNX1, remained unaltered. Western blotting of these cell lysates revealed that c-Myb protein expression was down-regulated to 30% of baseline (n=3 experiments) following transduction with miR150 but not with the miR negative control. Converse experiments utilizing anti-miRs, which inhibit expression of endogenous miRs, revealed that anti-miR150 significantly upregulated luciferase activity to 180% of baseline compared to an anti-miR-negative control (p=0.003; n=2 experiments). These findings establish that miR-150 down-modulates c-Myb mRNA, and to a greater extent protein levels, suggesting effects on both mRNA stability and protein translation efficiency. And since Tpo affects miR-150 expression, our results also suggest that in addition to direct effects on the survival and growth of MK progenitor cells, mediated by the JAK/STAT, PI3K/Akt and MAPK pathways, Tpo down-modulates c-Myb expression during megakaryopoiesis through the induction of miR150. We are currently ascertaining the in vivo role of miR-150 in Tpo-induced megakaryopoiesis, but these studies already establish that hematopoietic growth factors such as Tpo can influence transcription factor expression through modulation of microRNA species.
Author notes
Disclosure: No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal