Abstract
The Eph (erythroprotein-producing hepatoma amplified sequence) family receptor tyrosine kinases and their ephrin ligands (ephrins) are involved in a variety of functions in normal cell development and cancer. We have identified several members of this family as potential targets of aberrant DNA methylation using Methylated CpG Island Amplification (MCA) / DNA promoter microarray technology. This is of importance as there are no prior reports of potential Eph receptor or Ephrin epigenetic inactivation in human leukemia. To further investigate the role of Eph receptor and ephrin family genes in leukemia, we have analyzed their DNA methylation status in a panel of 23 leukemia cell lines and 65 primary ALL patient samples. Aberrant DNA methylation of 9 of these genes (EPHA4, EPHA5, EPHA6, EPHB2, EPHB3, EPHB4, EphrinA5, Ephrin B2, and EphrinB3) was detected in multiple leukemia cell lines but not in normal samples by bisulfite pyrosequencing. In ALL patient samples, the frequencies of DNA methylation detected in the promoter regions of these genes ranged from 23% to 87% for EPHA4, EPHA5, EPHA6, EPHB2, EPHB3, EPHB4, EphrinA5, Ephrin B2, and EphrinB3. Expression analysis of 3 of these genes (EPHA5, EPHB4 and Ephrin B2) in leukemia cell lines by real-time PCR further confirmed methylation associated gene silencing. Treatment of methylated/silenced cell lines with DNA methyltransferase inhibitor 5′-aza-2′-deoxycytidine resulted in gene re-expression. Forced overexpression of EPHB4 using a lentivirus transduction system in Raji cell lines resulted in decreased cell proliferation and adhesion-independent cell growth, as well as in an increase in staurosporine induction of apoptosis. In addition, EPHB4 overexpression resulted in a significant downregulation of phosphorylated Akt pathway but had no effect on mitogen-activated protein kinase pathway. In summary, we describe for the first time the epigenetic suppression of Ephrin receptors and their ligands in human leukemia, indicating that these genes may be potential tumor suppressors in leukemia. Targeting of these pathways may result in the development of new potential therapies and biomarkers for patients with ALL.
Author notes
Disclosure: No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal