Abstract
MEF2 transcription factors are well-established regulators of muscle development. Recently, work in murine models has identified one of these factors, Mef2c, as an important regulator in the pathogenesis and the development of acute myeloid leukemia (AML). However, little is know about the molecular mechanism and physiological role of Mef2c in hematopoiesis. Using conditional gene ablation, we have discovered an unexpected role for MEF2c in hematopoietic stem cells (HSCs), where it is required for pan-lymphoid commitment. Competitive repopulation experiments using Mef2c-null HSCs deleted by means of the Mx1-Cre/poly(IC) approach, revealed completely normal monocytic, granulocytic and erythroid differentiation capacities by mutant cells. Generation and renewal of myeloid progenitors and HSCs was also normal. However, contribution to lymphoid lineages (T-cells, B-cells and natural killer cells) was dramatically reduced. Mef2c-deleted HSCs were able to generate lymphoid primed multipotent progenitors (LMPPs) and expressed normal levels of Flt-3 and the master lymphoid regulator ikaros. However, expression of the interleukin-7 receptor (IL-7R) and the number of phenotypically defined common lymphoid progenitors (CLPs) were substantially reduced. We have found two conserved Mef2c-binding sites in the promoter of the Il-7R gene, indicating that Mef2c could directly regulate Il-7R transcription. This and other potential molecular mechanisms of Mef2c-mediated lymphoid commitment will be discussed. We have also studied the effects of lineage-specific deletion of Mef2c in both myeloid and lymphoid populations. Whereas deletion in myelomonocytic cells using the LysM-Cre strain resulted in no anomalies, B-cell specific ablation with the CD19-Cre line revealed major phenotypical and functional abnormalities. CD19-Cre:Mef2cf/f mice show impaired germinal center formation and reduced antibody production in response to T-cell dependent antigens. In addition Mef2c-null mature B-cells fail to express the mature marker CD23, the low affinity receptor for IgE, which we show is a direct transcriptional target. As a consequence of CD23 reduction, CD19-Cre:Mef2cf/f mice have increased IgE production, thus indicating a potential role of Mef2c in allergic disease. Our work here sheds new light on the molecular mechanisms of lymphopoiesis and identifies MEF2 factors as critical hematopoietic transcriptional regulators.
Author notes
Disclosure: No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal