Abstract
The primary event in the vaso-occlusive pathophysiology of sickle cell disease (SCD) is polymerization of hemoglobin S under deoxygenated conditions. In SCD, sub-clinical transient vaso-occlusive events caused by red cell sickling are likely to be more frequent resulting in “reperfusion injury” that generates reactive oxygen species and results in chronic oxidative stress that will contribute to multiple organ damage. In fact, previous studies have suggested that sickling is etiologic to repefusion injury and oxidative stress (Kaul and Hebbel, JCI, 2000), although the effect of antisickling therapy on oxidative stress has not been evaluated. Increasing the levels of antisickling fetal hemoglobin (HbF) by hydroxyurea therapy markedly reduces polymer formation. HbF exerts an ameliorating effect in sickle cell disease patients both on red cells and in the prevention of multiple organ damage. Here, we hypothesize that induction of HbF by genetic manipulation (in the absence of pharmacological manipulation) will reduce organ oxidative stress by reducing sickling and hemolysis, and thereby increase NO bioavailability. To test our hypothesis, we measured activity of selected antioxidants and lipid peroxidation (LPO) in BERK mice expressing exclusively human α- and βS-globins and varying levels of HbF, i.e., BERK (<1% HbF), BERKγM (20% HbF) and BERKγH (40% HbF). Percent sickled cells in venous samples (drawn in 2.5% glutaraldehyde solution in 0.1M cacodylate buffer) showed a distinct decrease with increased %HbF (P<0.05, multiple comparisons). Consistent with maximal sickling, BERK mice showed 5.4–6.9-fold increase in LPO in various tissues (muscle, kidney and liver) compared with C57BL controls (P<0.001). In contrast, BERKγM and BERKγH mice showed a marked decrease (73% and 80%, respectively) in LPO compared with BERK mice (P<0.001). Also, activity/levels of antioxidants (superoxide dismutase [SOD], catalase, glutathione peroxidase [GPx] and reduced glutathione [GSH]) showed significant decreases in BERK mice (P<0.001–0.00001). On the other hand, BERKγM and BERKγH mice showed significant increases in antioxidant activity (P<0.05–0.0001). Induction of HbF was associated with increased levels of NO metabolites (NOx) and reduced hemolysis; the latter is in agreement with our previous observations in BERKγM mice (Kaul et al. JCI, 2004). These results strongly suggest that reduced sickling and hemolysis in the presence of HbF cause increased NO bioavailability. NO is well known to exert antioxidative effects. Thus, we show for the first time that the induction of antisickling HbF leads to an increase in NO bioavailability and a decrease in oxidative stress, and that these protective effects are mediated primarily by reduced intravascular sickling.
Author notes
Disclosure:Research Funding: NIH grant.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal