Abstract
Several lines of evidence support the hypothesis that pluripotent stem cells (PSCs) reside in human tissues. Recently, we identified a population of very small embryonic-like (VSEL) SCs in umbilical cord blood (CB) (
Leukemia 2007;21:297-303
). These VSELs are: i) very small in size (<6 um); ii) SSEA-4+/Oct-4+/CD133+/CD34+/CXCR4+/Linneg/ CD45neg; iii) responsive to a stromal derived factor (SDF)-1 gradient; and iv) possess large nuclei that contain primitive euchromatin. In the current study, we optimized their isolation/purification strategy and employed several imaging and molecular techniques to better analyze these primitive cells. We noticed that because of their small size, CD133+/ Linneg/CD45neg VSELs are lost (42.5±12.6%) during routine CB unit processing by volume depletion before storage/freezing. Interestingly, these cells are more resistant to changes following freezing and thawing as compared to normal hematopoietic (H)SCs. Interestingly, 82.7±17.3% of the initially frozen CD133+/Linneg/CD45neg VSELs are preserved in frozen CB units, while only 65.0±6.1% CD133+/Linneg/CD45neg HSCs are recovered. Furthermore, when we employed Ficoll centrifugation to purify CB mononuclear cells (CB MNCs), we found that while 59.8±7.2% of CD133+/Linneg/CD45neg VSELs were lost, their hematopoietic counterparts (CD133+/Linneg/CD45+) were almost fully recovered (Fig. 1A). These data indicate that other more “VSEL-saving” strategies of erythrocyte depletion should be developed because of the unusual size and density of these cells. We also established that the most the optimal “VSEL-saving” strategy to deplete erythrocytes from CB was hypotonic lysis. However, we noticed that during this procedure, lyzed erythrocytes release phosphatidyloserine positive (PS+) membrane-derived microvesicles (MVs) and these PS+ MVs preferentially bind to VSELs. Because of this phenomenon, VSELs become PS+ and may be falsely recognized as apoptotic cells in the Annexin-V-binding assay. The unique morphological features of VSELs were confirmed by several complementary imaging methods. ImageStream analysis revealed that VSELs are smaller than erythrocytes, are larger than platelets, and posses a high nuclear/cytoplasmic ratio (Fig. 1B). The fraction of CD133+/Linneg/CD45neg) VSELs with the smallest size (<6 um) exhibit a high cytoplasmic nuclear ratio and highly express Oct-4 in the nucleus and SSEA-4 and CD133 antigens on the surface. Finally, we found 2 to 3 times higher numbers of VSELs in CB samples from vaginal deliveries as compared to scheduled C-sections. This supports the idea that VSEL are released into CB due to delivery-related stress/hypoxia. In conclusion, CB contains a population of VSELs but ~50% of these cells are not recovered by currently employed volume-reduction strategies because of their unique morphology. Taking into consideration that VSELs may be employed in regenerative medicine, novel volume reduction/erythrocyte depletion strategies require development in CB banking to avoid loss of these rare, primitive, and important cells.Disclosures: No relevant conflicts of interest to declare.
Author notes
Corresponding author
2008, The American Society of Hematology
2008
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal