Introduction: The multikinase inhibitor Sorafenib (Nexavar, Bayer) exerts a remarkable activity against a variety of nonhematological tumors by blocking tumor cell proliferation and angiogenesis through the inhibition of the RAF/MEK/ERK pathway, as well as the receptor tyrosine kinases vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptor (PDGFR), c-KIT, Flt3, and RET. Several lines of evidence suggest that sorafenib might have a relevant clinical impact in the therapy of malignant lymphomas by overcoming the cytoprotective effects of ERK, Mcl-1, and Bcl-XL. However, preclinical data establishing a rationale for the clinical use of sorafenib in lymphomas are still lacking. The present studies aimed to investigate the activity and the mechanism(s) of action of sorafenib in human lymphomas.

Methods: The effects of sorafenib were evaluated in vitro using a panel of six human cell lines of different phenotypes, including JVM-2 (B-Chronic Lymphocytic Leukemia), Granta-519 (Mantle Cell Lymphoma), DOHH2 (Follicular Lymphoma), SU-DHL-4V (Diffuse Large B-Cell Lymphoma), HD-MY-Z (Hodgkin Lymphoma), and KMS-11 (Multiple Myeloma) cell lines. Additionally, the antitumor efficacy and mechanism of action of sorafenib were investigated in vivo by means of five lymphoma xenograft models in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice.

Results: In vitro, the response of cell lines to sorafenib (1–10 μM for 24–48 hours) was evaluated by detecting apoptotic cell death with the annexin-V/propidium iodide double staining assay, and viable cell countings with the Trypan blue dye exclusion test. All 6 cell lines responded to sorafenib with values of 50% inhibitory concentrations ranging from 1 to 7.5 μM. In contrast, normal CD34+ cells remain insensitive to the drug up to 15 μM. Despite significant rates of sorafenib-induced apoptosis were seen in all cell lines, activation of caspase-3 analyzed by fluorescent-activated cell sorter was only detected in DOHH-2 and JVM-2 cell lines. The phosphorylation status of mitogen-activated protein kinase (MAPK) was investigated using the human phospho-MAPK Array kit (R&D systems), analyzed with the open source imaging software ImageJ (http://rsb.info.nih.gov/ij/), and then validated by Western blotting. Sorafenib induced a significant reduction of pAkt1, pAkt2, and pAkt3 in SU-DHL-4V, Granta-519, and JVM-2 cell lines, whereas p38 phosphorylation levels were significantly reduced in all but one cell line (KMS-11). Reduced levels of pMEK, pERK1 and pERK2 were detected in SU-DHL-4V, KMS-11, Granta-519, and HD-MY-Z cell lines. Down-regulation of MCL-1 was seen in HD-MY-Z, JVM-2, and DOHH-2 cell lines. In vivo, the activity of sorafenib was evaluated in NOD/SCID mice bearing subcutaneous tumor nodules. Animals with tumors averaging from 140 to 160 mg were randomly grouped to receive sorafenib (90 mg/kg body weight, IP, once daily for 15 days) or control vehicle. Sorafenib significantly (P ≤0.001) reduced the growth of subcutaneous HD-MY-Z, KMS-11, Granta-519, SU-DHL-4V, and JVM-2 nodules, with values of tumor growth inhibition of 70%, 52%, 40%, 37%, and 24%, respectively. In control mice, TUNEL staining of tumor sections showed large areas of viable cells without significant necrosis, whereas a 2- to 5-fold increase of necrotic areas was detected in sorafenib-treated mice bearing the different lymphoma xenografts. Analysis of tumor vasculature by means of in vivo biotinylation of endothelial cells with sulfo-NHS-LC-biotin showed a 30% to 60% reduction of vessel density in sorafenib-treated mice bearing the different lymphoma xenografts.

Conclusions: Sorafenib efficiently targets a variety of human lymphomas representative of different phenotypes by inhibiting tumor angiogenesis and directly affecting tumor cell survival. Our preclinical data establish a rationale for exploring the clinical activity of sorafenib in human lymphomas.

Disclosures: No relevant conflicts of interest to declare.

Author notes

Corresponding author

Sign in via your Institution