Abstract
Spatial and temporal regulation of alternative pre-mRNA splicing determines which exons are incorporated into mature mRNA, modulating mRNA coding capacity to ensure synthesis of appropriate protein isoforms throughout normal differentiation and development. During erythropoiesis, a stage-specific switch in pre-mRNA splicing activates incorporation of protein 4.1R exon 16, thereby increasing 4.1R affinity for spectrin and actin and mechanically strengthening red blood cell membranes. We are exploring the hypothesis that stage-specific changes in pre-mRNA splicing regulate expression of other critical genes during terminal erythropoiesis. Last year we described exon microarray and RT-PCR studies that revealed several novel pre-mRNA splicing switches in terminally differentiating human erythroid progenitors. These alternative splicing events involved well-annotated exons with consensus exon-intron boundaries, supporting a model in which these events represent a regulated alternative splicing program rather than a breakdown of splicing integrity in late erythropoiesis. Here we report additional evidence for this model by showing that several erythroid stage-specific switches in alternative pre-mRNA splicing are conserved between human and mouse. Primary mouse splenic erythroblasts from FVA-infected mice were cultured in vitro under differentiation conditions and used as the source of RNA for analysis of murine erythroid splicing events. From a total of seven internal cassette exons whose splicing was activated in late human erythroblasts, five exhibited an analogous splicing switch in murine erythroblasts. Comparative genomic analysis showed that these alternative exons are embedded in regions of unusually high sequence conservation among vertebrate species, suggesting that important regulatory signals are contained within the adjacent introns. Indeed, the flanking introns for several of these exons contain binding motifs for Fox2, an RNA binding protein and known splicing regulator for many tissue-specific splicing events. Further analysis of the conserved erythroid splicing events revealed the following:
three splicing switches occur in transcripts encoding RNA binding proteins (MBNL2, HNRPLL, and SNRP70), suggesting significant changes in the RNA processing machinery of late erythroblasts; and
three of these alternative exons encode premature stop codons that could induce nonsense mediated decay (NMD) and contribute to down-regulation of these genes during terminal erythropoiesis.
Consistent with the latter hypothesis, inhibition of NMD in murine erythroblast cultures led to increased accumulation of mRNA isoforms containing the premature stop codons. Together these results suggest the existence of a highly regulated alternative splicing program that is critical for late erythroid differentiation.
Disclosures: Clark:Affymetrix, Inc.: Employment.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal