Understanding patterns of etiologic commonality and heterogeneity for non-Hodgkin lymphomas may illuminate lymphomagenesis. We present the first systematic comparison of risks by lymphoma subtype for a broad range of putative risk factors in a population-based case-control study, including diffuse large B-cell (DLBCL; N = 416), follicular (N = 318), and marginal zone lymphomas (N = 106), and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; N = 133). We required at least 2 of 3 analyses to support differences in risk: (1) polytomous logistic regression, (2) homogeneity tests, or (3) dichotomous logistic regression, analyzing all 7 possible pairwise comparisons among the subtypes, corresponding to various groupings by clinical behavior, genetic features, and differentiation. Late birth order and high body mass index (≥ 35) kg/m2) increased risk for DLBCL alone. Autoimmune conditions increased risk for marginal zone lymphoma alone. The tumor necrosis factor G-308A polymorphism (rs1800629) increased risks for both DLBCL and marginal zone lymphoma. Exposure to certain dietary heterocyclic amines from meat consumption increased risk for CLL/SLL alone. We observed no significant risk factors for follicular lymphoma alone. These data clearly support both etiologic commonality and heterogeneity for lymphoma subtypes, suggesting that immune dysfunction is of greater etiologic importance for DLBCL and marginal zone lymphoma than for CLL/SLL and follicular lymphoma.

Non-Hodgkin lymphoma (NHL) comprises a group of closely related yet heterogeneous diseases, each characterized by the malignant transformation of lymphoid cells but with distinctive morphologic, immunophenotypic, genetic, and clinical features.1  The strongest known NHL risk factor is severe immunodeficiency, but the etiologies of most lymphomas remain unknown.1  Other factors possibly associated with NHL include a variety of medical conditions (eg, autoimmune diseases), infections (eg, hepatitis C virus), occupations (eg, farming), occupational and environmental risk factors (eg, polychlorinated biphenyls [PCBs], pesticides, solvents, hair dyes), and inherited genetic variations, all with moderate to weak strength of association or inconsistency in the literature.2,3 

Descriptive and analytic epidemiologic studies increasingly point to both heterogeneity and commonality in the etiology of lymphoma subtypes. Population registry data reveal striking differences in incidence among lymphoma subtypes by age, sex, race, and calendar year.4-6  Analytic studies link specific infections to individual lymphoma subtypes, for example, human T-lymphotropic virus type I (HTLV-I) inducing adult T-cell leukemia/lymphoma7  and Helicobacter pylori inducing gastric mucosa-associated lymphoid tissue (MALT) NHL.8  However, other viruses apparently affect lymphoma in general. For example, human immunodeficiency virus (HIV) infection markedly elevates risk for diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma, but it also weakly or moderately elevates risks for virtually all other types of lymphoma.1,9  Hepatitis C virus similarly affects multiple NHL subtypes, but not all.10  Emerging evidence from analytic studies reveals differences in genetic susceptibility by lymphoma subtype, with some commonality in risk among certain subtypes.11,12 

Understanding patterns of commonality and heterogeneity in the etiology of NHL subtypes may illuminate mechanisms of lymphomagenesis. We therefore systematically examined risks by NHL subtype across a broad range of putative environmental and genetic risk factors among 1321 NHL cases and 1057 population controls in a US multicenter study. In our analyses, we consider both individual lymphoma subtypes and combinations of subtypes. The rationale for considering combinations of NHL subtypes is founded in similarities in the morphologic, immunophenotypic, genetic, and clinical features used to define each subtype, and in the limited previous evidence of commonality in risk for some subtypes. Examples include the observations that (1) the t(14;18) chromosomal translocation, which has been suggested to have etiologic importance,13-16  is present only in follicular lymphoma and DLBCL; (2) the postulated cells of origin for follicular lymphoma DLBCL and marginal zone lymphoma are germinal center or post–germinal center B cells, whereas the postulated cell of origin for chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) is not thought to have undergone germinal center transit1 ; and (3) DLBCL is typically more aggressive than follicular lymphoma, marginal zone lymphoma, or CLL/SLL.1 

Study population

The study population, described in detail previously,17  included 1321 NHL cases diagnosed during 1998-2000, 20 to 74 years of age, from 4 Surveillance Epidemiology and End Results (SEER) registries (Iowa, Detroit, Los Angeles, and Seattle). Known HIV-positive cases were excluded. Population controls (N = 1057) were selected from residents of the same 4 SEER areas using random digit dialing (< 65 years) or Medicare eligibility files (≥ 65 years), frequency matching to cases by age (within 5-year groups), sex, race, and SEER area. Controls with a history of NHL or known HIV infection were excluded. Participation (percentage interviewed among those approached) was 76% in cases and 52% in controls. Institutional Review Boards at the National Cancer Institute and each SEER center approved the study protocol. Written informed consent was obtained from participants before interview in accordance with the Declaration of Helsinki.

Histopathology

All cases were histologically confirmed by the local diagnosing pathologist and assigned codes from the International Classification of Diseases for Oncology, 2nd edition (ICD-O-2) by the SEER registries.18  We grouped cases into NHL subtypes according to the World Health Organization classification1  using the International Lymphoma Epidemiology Consortium (InterLymph) guidelines.19 

In the present analyses, we evaluated NHL subtypes with at least 100 cases in our study: DLBCL (ICD-O-2: 9680-84, 9688; N = 417), follicular lymphoma (9690-91, 9695-98; N = 318), marginal zone lymphoma (9710-11, 9715; N = 106), and CLL/SLL (9670, 9823; N = 133). Our study primarily included SLL (N = 116) rather than CLL (N = 17) cases. Additional histologic types excluded from this analysis were mantle cell lymphoma (9673; N = 50), lymphoplasmacytic lymphoma (9671; N = 28), Burkitt lymphoma/leukemia (9687, 9826; N = 13), mycosis fungoides/Sézary syndrome (9700-01; N = 26), peripheral T-cell lymphoma (9702-09, 9714; N = 55), and not otherwise specified/unknown (N = 175).

Exposure assessment

From the numerous suggested risk factors for NHL or NHL subtypes that we have investigated,17,20-34  we included in the present analyses those risk factors that were associated with NHL or NHL subtypes in our study and for which there was some supporting evidence in the literature (Table S1, available on the Blood website; see the Supplemental Materials link at the top of the online article).

Questionnaire data and environmental samples.

We used a split-sample questionnaire design, with core questions for all respondents and additional questions for either group A (all black and 50% of non-black participants) or group B (50% of non-black participants). Before the interview, participants were mailed questionnaires regarding residential and job history, and either family and medical history (group A) or diet and lifestyle (group B). During the home visit, the interviewer administered a computer-assisted personal interview (Table S1, interview topics). Dust samples from about half the participants' vacuum cleaners were collected to measure residential exposure to pesticides, PCBs, and other chemicals.21,23 

DNA extraction and genotyping.

We conducted genotyping for 1172 (89%) cases and 982 (93%) controls. As previously described,34  DNA was extracted from blood clots, buffy coats, or buccal cell samples, and genotyping with quality control duplicates was conducted at the National Cancer Institute Core Genotyping Facility (Advanced Technology Center, Gaithersburg, MD; http://snp500cancer.nci.nih.gov).35 

In the present analyses, we included genetic polymorphisms in 7 genes that were associated with NHL or NHL subtypes in our study (Table S1). Agreement for quality control samples was more than 99% for all assays. Successful genotyping was achieved for more than 98% of DNA samples, and the genotype frequencies among white, non-Hispanic controls were in Hardy-Weinberg equilibrium for all polymorphisms (P > .05). We also assessed N-acetyltransferase 1 (NAT1) genotypes and N-acetyltransferase 2 (NAT2) phenotypes as described previously.36 

Statistical analysis

For each risk factor, odds ratios (ORs) and 95% confidence intervals (CIs) were derived from polytomous unconditional logistic regression models. P values for the linear trend were computed using ordinal variables.

To evaluate heterogeneity among the 4 NHL subtypes, we used 2 statistical approaches. First, we conducted a homogeneity test in the polytomous model, testing the null hypothesis that the regression coefficient for each risk factor was the same for all 4 subtypes.Values of P less than .05 were considered to provide evidence of heterogeneity. The test for homogeneity has the greatest power to detect risk differences when the risks for the subtypes all vary slightly from one another. Second, we analyzed all 7 possible case-case pairwise comparisons using dichotomous logistic regression models (controls were excluded): (1) DLBCL versus follicular lymphoma, marginal zone lymphoma, and CLL/SLL; (2) follicular lymphoma versus DLBCL, marginal zone lymphoma, and CLL/SLL; (3) marginal zone lymphoma versus DLBCL, follicular lymphoma, and CLL/SLL; (4) CLL/SLL versus DLBCL, follicular lymphoma, and marginal zone lymphoma; (5) DLBCL and follicular lymphoma versus marginal zone lymphoma and CLL/SLL; (6) DLBCL and marginal zone lymphoma versus follicular lymphoma and CLL/SLL; and (7) DLBCL and CLL/SLL versus follicular lymphoma and marginal zone lymphoma. For each of the 7 models, we computed a Wald χ2P value, testing the null hypothesis that the particular risk factor does not discriminate between the 2 disease groups modeled. To account for the 7 comparisons within the pairwise analysis, we applied a Bonferroni correction and considered P values less than .007 to be statistically significant. In contrast to the test for homogeneity, the pairwise analysis has the greatest power to detect risk differences when the risk for one disease group is distinct from the other(s). For risk factors with more than 2 categories, we used the ordinal variable for the homogeneity test and pairwise analysis.

All models included sex, age (< 45, 45-64, 65+ years), race (non-Hispanic white, black, other), SEER area, and education (< 12, 12-15, 16+ years) as covariates. We excluded one DLBCL case from all analyses because of missing data on education. Statistical analyses were performed using the SAS system, version 9.1 (SAS Institute, Cary, NC).

The study population was predominantly white and non-Hispanic (Table S2). The median ages at diagnosis for NHL cases and at interview for controls were 58 and 61 years, respectively. Compared with controls, DLBCL and follicular lymphoma cases were younger whereas CLL/SLL cases were older. The control group had a higher proportion of blacks than any of the NHL subtype case groups.

We highlight herein those risk factors for which we inferred etiologic heterogeneity among the NHL subtypes, as evidenced by at least 2 of 3 analyses supporting differences in risk (magnitude of the OR in comparison with other subtypes, P homogeneity < .05, or lowest P from the pairwise analysis < .007; Tables 1,Table 2,Table 34). The full results of the pairwise analysis for all environmental and genetic risk factors are presented in Table S3.

Table 1

Associations between family and medical history risk factors and non-Hodgkin lymphoma, by lymphoma subtype

ExposureControls, NAll NHL combined*
DLBCL
Follicular lymphoma
Marginal zone lymphoma
CLL/SLL
P homo-geneityLowest P value from pairwise analysis§
NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)
Family history of NHL              
    No 969 1185 1.0 (reference) 370 1.0 (reference) 284 1.0 (reference) 98 1.0 (reference) 121 1.0 (reference)   
    Yes 32 56 1.3 (0.8, 2.0) 18 1.3 (0.7, 2.3) 16 1.5 (0.8, 2.8) 1.4 (0.5, 4.1) 0.6 (0.2, 2.0) .5 CLL/SLL vs DLBCL, FL, MZ; P = .2 
Autoimmune conditions              
    No 996 1225 1.0 (reference) 392 1.0 (reference) 298 1.0 (reference) 90 1.0 (reference) 126 1.0 (reference)   
    Yes 61 95 1.3 (0.9, 1.9) 24 1.0 (0.6, 1.7) 20 1.1 (0.7, 1.9) 16 2.9 (1.6, 5.4) 0.9 (0.4, 2.0) .01 MZ vs DLBCL, FL, CLL/SLL; P > .001 
Asthma              
    No 523 684 1.0 (reference) 202 1.0 (reference) 151 1.0 (reference) 61 1.0 (reference) 76 1.0 (reference)   
    Yes 66 74 0.9 (0.6, 1.3) 21 0.9 (0.5, 1.5) 21 1.2 (0.7, 2.0) 0.4 (0.2, 1.3) 0.6 (0.2, 1.6) .3 MZ vs DLBCL, FL, CLL/SLL; P = .2 
Allergy              
    No 173 225 1.0 (reference) 83 1.0 (reference) 60 1.0 (reference) 17 1.0 (reference) 22 1.0 (reference)   
    Yes 289 326 0.9 (0.7, 1.2) 106 0.8 (0.5, 1.1) 84 0.8 (0.6, 1.3) 21 0.8 (0.4, 1.6) 29 0.9 (0.5, 1.7) .9 DLBCL, FL vs MZ, CLL/SLL; P = .1 
Surgeries, total no.              
    0-6 112 97 1.0 (reference) 29 1.0 (reference) 17 1.0 (reference) 1.0 (reference) 11 1.0 (reference)   
    7-12 123 148 1.4 (1.0, 2.1) 44 1.5 (0.9, 2.7) 28 1.6 (0.8, 3.1) 10 1.3 (0.5, 3.5) 11 0.8 (0.3, 2.0)   
    13-17 118 170 1.6 (1.1, 2.3) 56 1.8 (1.0, 3.2) 38 2.0 (1.0, 4.0) 17 2.1 (0.8, 5.5) 19 1.1 (0.5, 2.5)   
    18-25 114 166 1.6 (1.1, 2.4) 43 1.6 (0.9, 2.8) 46 2.5 (1.3, 4.9) 12 1.5 (0.6, 4.3) 23 1.4 (0.6, 3.2)   
    26+ 122 177 1.6 (1.1, 2.4) 51 1.7 (1.0, 3.1) 43 2.1 (1.1, 4.2) 19 2.2 (0.8, 6.0) 17 0.9 (0.4, 2.1)   
    P trend   .1  .1  .01  .1  .7 .5 DLBCL, FL vs MZ, CLL/SLL; P = .02 
Transfusion              
    No 876 1108 1.0 (reference) 352 1.0 (reference) 265 1.0 (reference) 83 1.0 (reference) 117 1.0 (reference)   
    Yes 170 199 1.0 (0.8, 1.3) 58 1.0 (0.7, 1.4) 50 1.1 (0.7, 1.5) 22 1.4 (0.9, 2.4) 16 0.7 (0.4, 1.2) .2 CLL/SLL vs DLBCL, FL, MZ; P = .1 
Birth order              
    First/middle 327 402 1.0 (reference) 104 1.0 (reference) 100 1.0 (reference) 35 1.0 (reference) 43 1.0 (reference)   
    Last 105 173 1.3 (1.0, 1.8) 64 1.9 (1.2, 2.8) 36 1.1 (0.7, 1.7) 13 1.2 (0.6, 2.3) 18 1.3 (0.7, 2.4) .2 DLBCL vs FL, MZ, CLL/SLL; P = .003 
ExposureControls, NAll NHL combined*
DLBCL
Follicular lymphoma
Marginal zone lymphoma
CLL/SLL
P homo-geneityLowest P value from pairwise analysis§
NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)
Family history of NHL              
    No 969 1185 1.0 (reference) 370 1.0 (reference) 284 1.0 (reference) 98 1.0 (reference) 121 1.0 (reference)   
    Yes 32 56 1.3 (0.8, 2.0) 18 1.3 (0.7, 2.3) 16 1.5 (0.8, 2.8) 1.4 (0.5, 4.1) 0.6 (0.2, 2.0) .5 CLL/SLL vs DLBCL, FL, MZ; P = .2 
Autoimmune conditions              
    No 996 1225 1.0 (reference) 392 1.0 (reference) 298 1.0 (reference) 90 1.0 (reference) 126 1.0 (reference)   
    Yes 61 95 1.3 (0.9, 1.9) 24 1.0 (0.6, 1.7) 20 1.1 (0.7, 1.9) 16 2.9 (1.6, 5.4) 0.9 (0.4, 2.0) .01 MZ vs DLBCL, FL, CLL/SLL; P > .001 
Asthma              
    No 523 684 1.0 (reference) 202 1.0 (reference) 151 1.0 (reference) 61 1.0 (reference) 76 1.0 (reference)   
    Yes 66 74 0.9 (0.6, 1.3) 21 0.9 (0.5, 1.5) 21 1.2 (0.7, 2.0) 0.4 (0.2, 1.3) 0.6 (0.2, 1.6) .3 MZ vs DLBCL, FL, CLL/SLL; P = .2 
Allergy              
    No 173 225 1.0 (reference) 83 1.0 (reference) 60 1.0 (reference) 17 1.0 (reference) 22 1.0 (reference)   
    Yes 289 326 0.9 (0.7, 1.2) 106 0.8 (0.5, 1.1) 84 0.8 (0.6, 1.3) 21 0.8 (0.4, 1.6) 29 0.9 (0.5, 1.7) .9 DLBCL, FL vs MZ, CLL/SLL; P = .1 
Surgeries, total no.              
    0-6 112 97 1.0 (reference) 29 1.0 (reference) 17 1.0 (reference) 1.0 (reference) 11 1.0 (reference)   
    7-12 123 148 1.4 (1.0, 2.1) 44 1.5 (0.9, 2.7) 28 1.6 (0.8, 3.1) 10 1.3 (0.5, 3.5) 11 0.8 (0.3, 2.0)   
    13-17 118 170 1.6 (1.1, 2.3) 56 1.8 (1.0, 3.2) 38 2.0 (1.0, 4.0) 17 2.1 (0.8, 5.5) 19 1.1 (0.5, 2.5)   
    18-25 114 166 1.6 (1.1, 2.4) 43 1.6 (0.9, 2.8) 46 2.5 (1.3, 4.9) 12 1.5 (0.6, 4.3) 23 1.4 (0.6, 3.2)   
    26+ 122 177 1.6 (1.1, 2.4) 51 1.7 (1.0, 3.1) 43 2.1 (1.1, 4.2) 19 2.2 (0.8, 6.0) 17 0.9 (0.4, 2.1)   
    P trend   .1  .1  .01  .1  .7 .5 DLBCL, FL vs MZ, CLL/SLL; P = .02 
Transfusion              
    No 876 1108 1.0 (reference) 352 1.0 (reference) 265 1.0 (reference) 83 1.0 (reference) 117 1.0 (reference)   
    Yes 170 199 1.0 (0.8, 1.3) 58 1.0 (0.7, 1.4) 50 1.1 (0.7, 1.5) 22 1.4 (0.9, 2.4) 16 0.7 (0.4, 1.2) .2 CLL/SLL vs DLBCL, FL, MZ; P = .1 
Birth order              
    First/middle 327 402 1.0 (reference) 104 1.0 (reference) 100 1.0 (reference) 35 1.0 (reference) 43 1.0 (reference)   
    Last 105 173 1.3 (1.0, 1.8) 64 1.9 (1.2, 2.8) 36 1.1 (0.7, 1.7) 13 1.2 (0.6, 2.3) 18 1.3 (0.7, 2.4) .2 DLBCL vs FL, MZ, CLL/SLL; P = .003 

CLL/SLL indicates chronic lymphocytic leukemia/small lymphocytic lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MZL, marginal zone lymphoma; and NHL, non-Hodgkin lymphoma.

*

Includes all NHL cases in the study, regardless of histologic subtype (N = 1320, excludes one DLBCL case resulting from missing data on education).

Counts may not sum to the total because of missing data. For some exposures, a split-sample design was used so that only approximately 50% of participants were expected to provide information.

Odds ratios (95% CIs) estimated using polytomous logistic regression models, adjusted for age, sex, race, study center, and education.

§

To account for the seven comparisons within the pairwise analysis, we applied a Bonferroni correction and considered P < .007 to be statistically significant.

Table 2

Associations between anthropometric, lifestyle, and dietary risk factors and non-Hodgkin lymphoma, by lymphoma subtype

ExposureControls,NAll NHL combined*
DLBCL
Follicular lymphoma
Marginal zone lymphoma
CLL/SLL
P homo-geneityLowest P value from pairwise analysis§
NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)
BMI, kg/m2              
    < 25 305 398 1.0 (reference) 117 1.0 (reference) 104 1.0 (reference) 29 1.0 (reference) 50 1.0 (reference)   
    25-< 35 578 688 0.9 (0.8, 1.1) 215 1.0 (0.7, 1.3) 161 0.9 (0.6, 1.1) 60 1.1 (0.7, 1.8) 66 0.6 (0.4, 0.9)   
    35+ 94 132 1.1 (0.8, 1.5) 57 1.7 (1.1, 2.5) 23 0.7 (0.4, 1.2) 1.0 (0.5, 2.3) 12 0.7 (0.4, 1.4)   
    P trend   .4  .06  .2  .8  .06 .008 DLBCL vs FL, MZ, CLL/SLL; P = .01 
Height, in              
    < 65 283 308 1.0 (reference) 93 1.0 (reference) 71 1.0 (reference) 29 1.0 (reference) 29 1.0 (reference)   
    65-70 472 602 1.2 (0.9, 1.5) 186 1.1 (0.8, 1.6) 142 1.4 (1.0, 2.0) 50 1.2 (0.7, 2.1) 69 1.3 (0.7, 2.2)   
    71+ 232 319 1.3 (0.9, 1.8) 112 1.3 (0.8, 2.1) 76 1.8 (1.1, 2.9) 19 1.1 (0.5, 2.4) 33 1.1 (0.6, 2.3)   
    P trend   .3  .2  .02  .8  .9 .5 DLBCL, FL vs MZ, CLL/SLL; P = .04 
Cigarette smoking              
    Never 184 219 1.0 (reference) 83 1.0 (reference) 56 1.0 (reference) 15 1.0 (reference) 23 1.0 (reference)   
    Former 161 161 0.9 (0.6, 1.2) 54 0.8 (0.5, 1.2) 37 0.9 (0.5, 1.4) 10 0.8 (0.3, 1.9) 18 0.8 (0.4, 1.6)   
    Current 61 89 1.1 (0.7, 1.6) 29 1.0 (0.6, 1.6) 24 1.1 (0.6, 2.1) 1.1 (0.4, 3.0) 1.1 (0.5, 2.6) .9 DLBCL, MZ vs FL, CLL/SLL; P = .5 
Ethanol              
    Nondrinkers 156 236 1.0 (reference) 83 1.0 (reference) 65 1.0 (reference) 15 1.0 (reference) 24 1.0 (reference)   
    Ever drinkers 233 228 0.6 (0.4, 0.7) 83 0.6 (0.4, 0.8) 52 0.5 (0.3, 0.7) 16 0.6 (0.3, 1.4) 24 0.6 (0.3, 1.2) .8 DLBCL, FL vs MZ, CLL/SLL; P = .002 
Dietary vitamin B6, mg/1000 kcal              
    < 0.97 197 286 1.0 (reference) 110 1.0 (reference) 68 1.0 (reference) 17 1.0 (reference) 32 1.0 (reference)   
    0.97+ 192 178 0.7 (0.5, 0.9) 56 0.6 (0.4, 0.8) 49 0.8 (0.5, 1.3) 14 1.1 (0.5, 2.3) 16 0.5 (0.3, 1.0) .2 DLBCL, CLL/SLL vs FL, MZ; P = .002 
Dietary lutein and zeaxanthin, μg/d              
    < 1915 195 274 1.0 (reference) 99 1.0 (reference) 70 1.0 (reference) 20 1.0 (reference) 31 1.0 (reference)   
    1915+ 194 190 0.8 (0.6, 1.1) 67 0.8 (0.5, 1.2) 47 0.8 (0.5, 1.3) 11 0.6 (0.3, 1.3) 17 0.6 (0.3, 1.2) .8 CLL/SLL vs DLBCL, FL, MZ; P = .2 
Dietary zinc, mg/d              
    < 16 196 269 1.0 (reference) 96 1.0 (reference) 67 1.0 (reference) 16 1.0 (reference) 29 1.0 (reference)   
    16+ 193 195 0.8 (0.6, 1.0) 70 0.8 (0.5, 1.1) 50 0.8 (0.5, 1.2) 15 1.1 (0.5, 2.3) 19 0.6 (0.3, 1.1) .7 DLBCL, CLL/SLL vs FL, MZ; P = .1 
Green leafy vegetables, servings/wk              
    < 4 195 297 1.0 (reference) 116 1.0 (reference) 74 1.0 (reference) 21 1.0 (reference) 29 1.0 (reference)   
    4+ 194 167 0.6 (0.5, 0.8) 50 0.5 (0.3, 0.7) 43 0.6 (0.4, 1.0) 10 0.4 (0.2, 1.0) 19 0.8 (0.4, 1.5) .5 DLBCL, MZ vs FL, CLL/SLL; P < .001 
Cruciferous vegetables, servings/wk              
    < 2 196 269 1.0 (reference) 96 1.0 (reference) 66 1.0 (reference) 20 1.0 (reference) 29 1.0 (reference)   
    2+ 193 195 0.8 (0.6, 1.1) 70 0.8 (0.6, 1.2) 51 0.9 (0.6, 1.3) 11 0.6 (0.3, 1.4) 19 0.8 (0.4, 1.4) .9 MZ vs DLBCL, FL, CLL/SLL; P = .4 
Dietary MeIQx, ng/d              
    < 33.4 235 262 1.0 (reference) 86 1.0 (reference) 77 1.0 (reference) 20 1.0 (reference) 15 1.0 (reference)   
    33.4+ 154 202 1.0 (0.8, 1.4) 80 1.2 (0.8, 1.8) 40 0.7 (0.4, 1.1) 11 0.8 (0.3, 1.7) 33 3.0 (1.5, 5.9) < .001 CLL/SLL vs DLBCL, FL, MZ; P < .001 
Dietary PhIP, ng/d              
    < 105.6 234 279 1.0 (reference) 102 1.0 (reference) 74 1.0 (reference) 18 1.0 (reference) 25 1.0 (reference)   
    105.6+ 155 185 0.8 (0.6, 1.1) 64 0.7 (0.5, 1.1) 43 0.7 (0.4, 1.1) 13 0.9 (0.4, 2.0) 23 1.2 (0.6, 2.3) .4 DLBCL, FL vs MZ, CLL/SLL; P = .03 
ExposureControls,NAll NHL combined*
DLBCL
Follicular lymphoma
Marginal zone lymphoma
CLL/SLL
P homo-geneityLowest P value from pairwise analysis§
NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)
BMI, kg/m2              
    < 25 305 398 1.0 (reference) 117 1.0 (reference) 104 1.0 (reference) 29 1.0 (reference) 50 1.0 (reference)   
    25-< 35 578 688 0.9 (0.8, 1.1) 215 1.0 (0.7, 1.3) 161 0.9 (0.6, 1.1) 60 1.1 (0.7, 1.8) 66 0.6 (0.4, 0.9)   
    35+ 94 132 1.1 (0.8, 1.5) 57 1.7 (1.1, 2.5) 23 0.7 (0.4, 1.2) 1.0 (0.5, 2.3) 12 0.7 (0.4, 1.4)   
    P trend   .4  .06  .2  .8  .06 .008 DLBCL vs FL, MZ, CLL/SLL; P = .01 
Height, in              
    < 65 283 308 1.0 (reference) 93 1.0 (reference) 71 1.0 (reference) 29 1.0 (reference) 29 1.0 (reference)   
    65-70 472 602 1.2 (0.9, 1.5) 186 1.1 (0.8, 1.6) 142 1.4 (1.0, 2.0) 50 1.2 (0.7, 2.1) 69 1.3 (0.7, 2.2)   
    71+ 232 319 1.3 (0.9, 1.8) 112 1.3 (0.8, 2.1) 76 1.8 (1.1, 2.9) 19 1.1 (0.5, 2.4) 33 1.1 (0.6, 2.3)   
    P trend   .3  .2  .02  .8  .9 .5 DLBCL, FL vs MZ, CLL/SLL; P = .04 
Cigarette smoking              
    Never 184 219 1.0 (reference) 83 1.0 (reference) 56 1.0 (reference) 15 1.0 (reference) 23 1.0 (reference)   
    Former 161 161 0.9 (0.6, 1.2) 54 0.8 (0.5, 1.2) 37 0.9 (0.5, 1.4) 10 0.8 (0.3, 1.9) 18 0.8 (0.4, 1.6)   
    Current 61 89 1.1 (0.7, 1.6) 29 1.0 (0.6, 1.6) 24 1.1 (0.6, 2.1) 1.1 (0.4, 3.0) 1.1 (0.5, 2.6) .9 DLBCL, MZ vs FL, CLL/SLL; P = .5 
Ethanol              
    Nondrinkers 156 236 1.0 (reference) 83 1.0 (reference) 65 1.0 (reference) 15 1.0 (reference) 24 1.0 (reference)   
    Ever drinkers 233 228 0.6 (0.4, 0.7) 83 0.6 (0.4, 0.8) 52 0.5 (0.3, 0.7) 16 0.6 (0.3, 1.4) 24 0.6 (0.3, 1.2) .8 DLBCL, FL vs MZ, CLL/SLL; P = .002 
Dietary vitamin B6, mg/1000 kcal              
    < 0.97 197 286 1.0 (reference) 110 1.0 (reference) 68 1.0 (reference) 17 1.0 (reference) 32 1.0 (reference)   
    0.97+ 192 178 0.7 (0.5, 0.9) 56 0.6 (0.4, 0.8) 49 0.8 (0.5, 1.3) 14 1.1 (0.5, 2.3) 16 0.5 (0.3, 1.0) .2 DLBCL, CLL/SLL vs FL, MZ; P = .002 
Dietary lutein and zeaxanthin, μg/d              
    < 1915 195 274 1.0 (reference) 99 1.0 (reference) 70 1.0 (reference) 20 1.0 (reference) 31 1.0 (reference)   
    1915+ 194 190 0.8 (0.6, 1.1) 67 0.8 (0.5, 1.2) 47 0.8 (0.5, 1.3) 11 0.6 (0.3, 1.3) 17 0.6 (0.3, 1.2) .8 CLL/SLL vs DLBCL, FL, MZ; P = .2 
Dietary zinc, mg/d              
    < 16 196 269 1.0 (reference) 96 1.0 (reference) 67 1.0 (reference) 16 1.0 (reference) 29 1.0 (reference)   
    16+ 193 195 0.8 (0.6, 1.0) 70 0.8 (0.5, 1.1) 50 0.8 (0.5, 1.2) 15 1.1 (0.5, 2.3) 19 0.6 (0.3, 1.1) .7 DLBCL, CLL/SLL vs FL, MZ; P = .1 
Green leafy vegetables, servings/wk              
    < 4 195 297 1.0 (reference) 116 1.0 (reference) 74 1.0 (reference) 21 1.0 (reference) 29 1.0 (reference)   
    4+ 194 167 0.6 (0.5, 0.8) 50 0.5 (0.3, 0.7) 43 0.6 (0.4, 1.0) 10 0.4 (0.2, 1.0) 19 0.8 (0.4, 1.5) .5 DLBCL, MZ vs FL, CLL/SLL; P < .001 
Cruciferous vegetables, servings/wk              
    < 2 196 269 1.0 (reference) 96 1.0 (reference) 66 1.0 (reference) 20 1.0 (reference) 29 1.0 (reference)   
    2+ 193 195 0.8 (0.6, 1.1) 70 0.8 (0.6, 1.2) 51 0.9 (0.6, 1.3) 11 0.6 (0.3, 1.4) 19 0.8 (0.4, 1.4) .9 MZ vs DLBCL, FL, CLL/SLL; P = .4 
Dietary MeIQx, ng/d              
    < 33.4 235 262 1.0 (reference) 86 1.0 (reference) 77 1.0 (reference) 20 1.0 (reference) 15 1.0 (reference)   
    33.4+ 154 202 1.0 (0.8, 1.4) 80 1.2 (0.8, 1.8) 40 0.7 (0.4, 1.1) 11 0.8 (0.3, 1.7) 33 3.0 (1.5, 5.9) < .001 CLL/SLL vs DLBCL, FL, MZ; P < .001 
Dietary PhIP, ng/d              
    < 105.6 234 279 1.0 (reference) 102 1.0 (reference) 74 1.0 (reference) 18 1.0 (reference) 25 1.0 (reference)   
    105.6+ 155 185 0.8 (0.6, 1.1) 64 0.7 (0.5, 1.1) 43 0.7 (0.4, 1.1) 13 0.9 (0.4, 2.0) 23 1.2 (0.6, 2.3) .4 DLBCL, FL vs MZ, CLL/SLL; P = .03 

BMI indicates body mass index; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MZ, marginal zone lymphoma; MeIQx, 2-amino-3,8-dimethylimidazo-[4,5-f]quinoxaline; NHL, non-Hodgkin lymphoma; and PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.

*

Includes all NHL cases in the study, regardless of histologic subtype (N = 1320, excludes one DLBCL case resulting from missing data on education).

Counts may not sum to the total because of missing data. For some exposures (Table 1), a split-sample design was used so that only approximately 50% of participants were expected to provide information.

Odds ratios (95% CIs) estimated using polytomous logistic regression models, adjusted for age, sex, race, study center, and education.

§

To account for the seven comparisons within the pairwise analysis, we applied a Bonferroni correction and considered P < .007 to be statistically significant.

For cigarette smoking, the homogeneity test and pairwise analysis were conducted comparing current smokers to never smokers; former smokers were excluded from these analyses.

Table 3

Associations between sun exposure and environmental risk factors and non-Hodgkin lymphoma, by lymphoma subtype

ExposureControls,NAll NHL combined*
DLBCL
Follicular lymphoma
Marginal zone lymphoma
CLL/SLL
P homo-geneityLowest P value from pairwise analysis§
NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)
Sun in teens, h/wk              
    < 7 46 62 1.0 (reference) 23 1.0 (reference) 18 1.0 (reference) 1.0 (reference) 1.0 (reference)   
    7-< 14 68 89 1.0 (0.6, 1.7) 26 0.8 (0.4, 1.6) 24 1.0 (0.5, 2.0) 1.1 (0.3, 4.1) 0.5 (0.1, 2.2)   
    14-< 28 155 185 0.8 (0.5, 1.3) 67 0.8 (0.4, 1.4) 44 0.7 (0.4, 1.3) 13 0.8 (0.2, 2.6) 13 0.7 (0.2, 2.2)   
    28+ 187 211 0.8 (0.5, 1.2) 73 0.7 (0.4, 1.2) 56 0.7 (0.4, 1.4) 14 0.7 (0.2, 2.3) 28 1.2 (0.4, 3.5)   
    P trend   .5  .2  .3  .3  .3 .3 CLL/SLL vs DLBCL, FL, MZ; P = .1 
Sun in past 10 y, h/wk              
    < 7 159 216 1.0 (reference) 71 1.0 (reference) 58 1.0 (reference) 14 1.0 (reference) 18 1.0 (reference)   
    7-< 14 126 145 0.8 (0.6, 1.2) 43 0.7 (0.5, 1.2) 43 0.9 (0.6, 1.4) 12 1.0 (0.5, 2.4) 12 0.8 (0.4, 1.7)   
    14-< 28 123 131 0.7 (0.5, 1.0) 44 0.7 (0.5, 1.2) 29 0.6 (0.4, 1.0) 0.7 (0.3, 1.8) 18 1.1 (0.6, 2.4)   
    28+ 51 59 0.7 (0.4, 1.1) 31 1.1 (0.6, 1.9) 14 0.6 (0.3, 1.2) 0.5 (0.1, 1.9) 0.4 (0.1, 1.4)   
    P trend   .3  .7  .05  .3  .5 .5 FL vs DLBCL, MZ, CLL/SLL; P = .1 
Eye color              
    Green/blue-green 64 59 1.0 (reference) 17 1.0 (reference) 19 1.0 (reference) 1.0 (reference) 1.0 (reference)   
    Blue 180 188 1.3 (0.8, 2.0) 71 1.7 (0.9, 3.1) 53 1.2 (0.7, 2.3) 10 1.8 (0.4, 8.7) 15 0.6 (0.2, 1.6)   
    Hazel 84 96 1.4 (0.9, 2.2) 28 1.4 (0.7, 2.8) 29 1.4 (0.7, 2.7) 3.7 (0.8, 18.0) 13 1.3 (0.5, 3.2)   
    Light brown 41 50 1.7 (0.9, 2.9) 20 2.4 (1.1, 5.4) 11 1.3 (0.5, 3.0) 2.1 (0.3, 13.5) 0.7 (0.2, 2.8)   
    Dark brown 93 158 2.2 (1.4, 3.4) 53 2.6 (1.3, 4.9) 32 1.4 (0.7, 2.8) 14 4.7 (1.0, 22.4) 12 1.1 (0.4, 2.8)   
    P trend   .009  .005  .3  .01  .4 .2 DLBCL, MZ vs FL, CLL/SLL; P = .01 
Termite treatment before 1988              
    Not treated before 1988 717 852 1.0 (reference) 261 1.0 (reference) 218 1.0 (reference) 59 1.0 (reference) 96 1.0 (reference)   
    None or DK treated 176 244 1.1 (0.9, 1.4) 80 1.1 (0.8, 1.6) 59 1.0 (0.7, 1.5) 21 1.4 (0.8, 2.4) 20 1.0 (0.6, 1.6)   
    1+ homes treated before 1988 162 220 1.3 (1.0, 1.6) 74 1.6 (1.1, 2.3) 41 1.0 (0.7, 1.5) 26 1.8 (1.0, 3.1) 17 0.9 (0.5, 1.6) .1 DLBCL, MZ vs FL, CLL/SLL; P = .009 
Alpha-chlordane (dust), ng/g              
    ND 317 409 1.0 (reference) 128 1.0 (reference) 99 1.0 (reference) 29 1.0 (reference) 50 1.0 (reference)   
    20.8–60.1 98 116 0.9 (0.7, 1.3) 31 0.9 (0.5, 1.4) 26 0.9 (0.6, 1.5) 16 1.5 (0.8, 3.0) 10 0.7 (0.3, 1.4)   
    60.3–5870 98 157 1.3 (1.0, 1.9) 50 1.5 (1.0, 2.3) 34 1.3 (0.8, 2.1) 16 1.5 (0.7, 3.1) 0.6 (0.3, 1.3)   
    P trend   .1  .1  .4  .2  .1 .1 CLL/SLL vs DLBCL, FL, MZ; P = .04 
PCB180 (dust), ng/g              
    < 20.8 395 499 1.0 (reference) 162 1.0 (reference) 115 1.0 (reference) 41 1.0 (reference) 52 1.0 (reference)   
    20.8-44.3 60 92 1.3 (0.9, 1.9) 27 1.2 (0.7, 2.0) 20 1.3 (0.7, 2.2) 1.2 (0.5, 3.1) 11 1.3 (0.6, 2.8)   
    44.4+ 58 91 1.4 (1.0, 2.0) 20 0.9 (0.5, 1.6) 24 1.6 (1.0, 2.8) 14 3.0 (1.5, 6.1) 0.8 (0.3, 2.0)   
    P trend   .07  .9  .06  .004  .9 .04 MZ vs DLBCL, FL, CLL/SLL; P = .01 
Pre-1980 hair dye use              
    Never 98 101 1.0 (reference) 34 1.0 (reference) 24 1.0 (reference) 13 1.0 (reference) 10 1.0 (reference)   
    Permanent 123 169 1.3 (0.9, 1.9) 42 0.9 (0.5, 1.7) 49 1.9 (1.0, 3.4) 16 0.9 (0.4, 2.0) 18 1.5 (0.6, 3.5) .2 FL vs DLBCL, MZ, CLL/SLL; P = .07 
ExposureControls,NAll NHL combined*
DLBCL
Follicular lymphoma
Marginal zone lymphoma
CLL/SLL
P homo-geneityLowest P value from pairwise analysis§
NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)
Sun in teens, h/wk              
    < 7 46 62 1.0 (reference) 23 1.0 (reference) 18 1.0 (reference) 1.0 (reference) 1.0 (reference)   
    7-< 14 68 89 1.0 (0.6, 1.7) 26 0.8 (0.4, 1.6) 24 1.0 (0.5, 2.0) 1.1 (0.3, 4.1) 0.5 (0.1, 2.2)   
    14-< 28 155 185 0.8 (0.5, 1.3) 67 0.8 (0.4, 1.4) 44 0.7 (0.4, 1.3) 13 0.8 (0.2, 2.6) 13 0.7 (0.2, 2.2)   
    28+ 187 211 0.8 (0.5, 1.2) 73 0.7 (0.4, 1.2) 56 0.7 (0.4, 1.4) 14 0.7 (0.2, 2.3) 28 1.2 (0.4, 3.5)   
    P trend   .5  .2  .3  .3  .3 .3 CLL/SLL vs DLBCL, FL, MZ; P = .1 
Sun in past 10 y, h/wk              
    < 7 159 216 1.0 (reference) 71 1.0 (reference) 58 1.0 (reference) 14 1.0 (reference) 18 1.0 (reference)   
    7-< 14 126 145 0.8 (0.6, 1.2) 43 0.7 (0.5, 1.2) 43 0.9 (0.6, 1.4) 12 1.0 (0.5, 2.4) 12 0.8 (0.4, 1.7)   
    14-< 28 123 131 0.7 (0.5, 1.0) 44 0.7 (0.5, 1.2) 29 0.6 (0.4, 1.0) 0.7 (0.3, 1.8) 18 1.1 (0.6, 2.4)   
    28+ 51 59 0.7 (0.4, 1.1) 31 1.1 (0.6, 1.9) 14 0.6 (0.3, 1.2) 0.5 (0.1, 1.9) 0.4 (0.1, 1.4)   
    P trend   .3  .7  .05  .3  .5 .5 FL vs DLBCL, MZ, CLL/SLL; P = .1 
Eye color              
    Green/blue-green 64 59 1.0 (reference) 17 1.0 (reference) 19 1.0 (reference) 1.0 (reference) 1.0 (reference)   
    Blue 180 188 1.3 (0.8, 2.0) 71 1.7 (0.9, 3.1) 53 1.2 (0.7, 2.3) 10 1.8 (0.4, 8.7) 15 0.6 (0.2, 1.6)   
    Hazel 84 96 1.4 (0.9, 2.2) 28 1.4 (0.7, 2.8) 29 1.4 (0.7, 2.7) 3.7 (0.8, 18.0) 13 1.3 (0.5, 3.2)   
    Light brown 41 50 1.7 (0.9, 2.9) 20 2.4 (1.1, 5.4) 11 1.3 (0.5, 3.0) 2.1 (0.3, 13.5) 0.7 (0.2, 2.8)   
    Dark brown 93 158 2.2 (1.4, 3.4) 53 2.6 (1.3, 4.9) 32 1.4 (0.7, 2.8) 14 4.7 (1.0, 22.4) 12 1.1 (0.4, 2.8)   
    P trend   .009  .005  .3  .01  .4 .2 DLBCL, MZ vs FL, CLL/SLL; P = .01 
Termite treatment before 1988              
    Not treated before 1988 717 852 1.0 (reference) 261 1.0 (reference) 218 1.0 (reference) 59 1.0 (reference) 96 1.0 (reference)   
    None or DK treated 176 244 1.1 (0.9, 1.4) 80 1.1 (0.8, 1.6) 59 1.0 (0.7, 1.5) 21 1.4 (0.8, 2.4) 20 1.0 (0.6, 1.6)   
    1+ homes treated before 1988 162 220 1.3 (1.0, 1.6) 74 1.6 (1.1, 2.3) 41 1.0 (0.7, 1.5) 26 1.8 (1.0, 3.1) 17 0.9 (0.5, 1.6) .1 DLBCL, MZ vs FL, CLL/SLL; P = .009 
Alpha-chlordane (dust), ng/g              
    ND 317 409 1.0 (reference) 128 1.0 (reference) 99 1.0 (reference) 29 1.0 (reference) 50 1.0 (reference)   
    20.8–60.1 98 116 0.9 (0.7, 1.3) 31 0.9 (0.5, 1.4) 26 0.9 (0.6, 1.5) 16 1.5 (0.8, 3.0) 10 0.7 (0.3, 1.4)   
    60.3–5870 98 157 1.3 (1.0, 1.9) 50 1.5 (1.0, 2.3) 34 1.3 (0.8, 2.1) 16 1.5 (0.7, 3.1) 0.6 (0.3, 1.3)   
    P trend   .1  .1  .4  .2  .1 .1 CLL/SLL vs DLBCL, FL, MZ; P = .04 
PCB180 (dust), ng/g              
    < 20.8 395 499 1.0 (reference) 162 1.0 (reference) 115 1.0 (reference) 41 1.0 (reference) 52 1.0 (reference)   
    20.8-44.3 60 92 1.3 (0.9, 1.9) 27 1.2 (0.7, 2.0) 20 1.3 (0.7, 2.2) 1.2 (0.5, 3.1) 11 1.3 (0.6, 2.8)   
    44.4+ 58 91 1.4 (1.0, 2.0) 20 0.9 (0.5, 1.6) 24 1.6 (1.0, 2.8) 14 3.0 (1.5, 6.1) 0.8 (0.3, 2.0)   
    P trend   .07  .9  .06  .004  .9 .04 MZ vs DLBCL, FL, CLL/SLL; P = .01 
Pre-1980 hair dye use              
    Never 98 101 1.0 (reference) 34 1.0 (reference) 24 1.0 (reference) 13 1.0 (reference) 10 1.0 (reference)   
    Permanent 123 169 1.3 (0.9, 1.9) 42 0.9 (0.5, 1.7) 49 1.9 (1.0, 3.4) 16 0.9 (0.4, 2.0) 18 1.5 (0.6, 3.5) .2 FL vs DLBCL, MZ, CLL/SLL; P = .07 

CLL/SLL indicates chronic lymphocytic leukemia/small lymphocytic lymphoma; DK, don't know; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MZ, marginal zone lymphoma; NHL, non-Hodgkin lymphoma; and PCB180, polychlorinated biphenyl congener 180.

*

Includes all NHL cases in the study, regardless of histologic subtype (N = 1320, excludes one DLBCL case resulting from missing data on education).

Counts may not sum to the total because of missing data. For some exposures (Table 1), a split-sample design was used so that only approximately 50% of participants were expected to provide information.

Odds ratios (95% CIs) estimated using polytomous logistic regression models, adjusted for age, sex, race, study center, and education.

§

To account for the seven comparisons within the pairwise analysis, we applied a Bonferroni correction and considered P < .007 to be statistically significant.

Table 4

Associations between genetic polymorphisms and non-Hodgkin lymphoma, by lymphoma subtype

ExposureControls,NAll NHL combined*
DLBCL
Follicular lymphoma
Marginal zone lymphoma
CLL/SLL
P homo-geneityLowest P value from pairwise analysis§
NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)
TNF G-308A, rs1800629              
    GG 696 799 1.0 (reference) 236 1.0 (reference) 196 1.0 (reference) 64 1.0 (reference) 94 1.0 (reference)   
    GA 207 298 1.3 (1.0, 1.6) 102 1.5 (1.1, 2.0) 67 1.1 (0.8, 1.6) 23 1.3 (0.8, 2.2) 23 0.8 (0.5, 1.3)   
    AA 18 38 2.0 (1.1, 3.6) 16 2.9 (1.4, 5.8) 1.4 (0.6, 3.5) 3.6 (1.3, 10.2) 0.4 (0.1, 3.1)   
    P trend   .002  <.001  .3  .03  .2   
    GA+AA 225 336 1.3 (1.1, 1.6) 118 1.6 (1.2, 2.1) 74 1.2 (0.9, 1.6) 28 1.5 (0.9, 2.4) 24 0.8 (0.5, 1.2) .04 DLBCL, MZ vs FL, CLL/SLL; P = .002 
IL10 T-3575A, rs1800890              
    TT 379 446 1.0 (reference) 134 1.0 (reference) 98 1.0 (reference) 44 1.0 (reference) 49 1.0 (reference)   
    TA 401 518 1.1 (0.9, 1.4) 165 1.2 (0.9, 1.6) 129 1.2 (0.9, 1.7) 38 0.9 (0.5, 1.4) 45 0.9 (0.6, 1.3)   
    AA 130 164 1.1 (0.8, 1.4) 54 1.1 (0.8, 1.7) 41 1.2 (0.8, 1.8) 10 0.7 (0.4, 1.5) 23 1.3 (0.7, 2.2)   
    P trend   .4  .3  .3  .3  .6   
    TA+AA 531 682 1.1 (0.9, 1.3) 219 1.2 (0.9, 1.5) 170 1.2 (0.9, 1.6) 48 0.8 (0.5, 1.3) 68 1.0 (0.6, 1.4) .3 DLBCL, FL vs MZ, CLL/SLL; P = .08 
FCGR2A Ex4-120G>A, R165H, rs1801274              
    GG 242 237 1.0 (reference) 78 1.0 (reference) 51 1.0 (reference) 19 1.0 (reference) 23 1.0 (reference)   
    AG 430 539 1.3 (1.0, 1.6) 164 1.2 (0.8, 1.6) 135 1.4 (1.0, 2.1) 40 1.2 (0.7, 2.1) 60 1.5 (0.9, 2.4)   
    AA 227 335 1.5 (1.1, 1.9) 102 1.3 (0.9, 1.9) 79 1.5 (1.0, 2.3) 31 1.7 (0.9, 3.1) 32 1.5 (0.8, 2.7)   
    P trend   .004  .1  .04  .08  .2   
    AG+AA 657 874 1.3 (1.1, 1.6) 266 1.2 (0.9, 1.6) 214 1.5 (1.0, 2.1) 71 1.4 (0.8, 2.3) 92 1.5 (0.9, 2.4) .8 FL vs DLBCL, MZ, CLL/SLL; P = .09 
RAG1 Ex2+2473A>G, K820R, rs2227973              
    AA 695 810 1.0 (reference) 258 1.0 (reference) 190 1.0 (reference) 59 1.0 (reference) 86 1.0 (reference)   
    AG 179 246 1.1 (0.9, 1.4) 73 1.1 (0.8, 1.5) 57 1.2 (0.8, 1.7) 29 1.7 (1.1, 2.8) 26 1.2 (0.8, 2.0)   
    GG 17 35 1.8 (1.0, 3.4) 1.4 (0.5, 3.4) 10 2.8 (1.2, 6.4) 2.0 (0.6, 6.5) 1.8 (0.5, 6.7)   
    P trend   .05  .4  .05  .02  .3   
    AG+GG 196 281 1.2 (1.0, 1.5) 80 1.1 (0.8, 1.5) 67 1.3 (0.9, 1.8) 33 1.8 (1.1, 2.8) 29 1.3 (0.8, 2.0) .3 MZ vs DLBCL, FL, CLL/SLL; P = .03 
LIG4 Ex3+54C>T, T9I, rs1805388              
    CC 611 788 1.0 (reference) 247 1.0 (reference) 197 1.0 (reference) 67 1.0 (reference) 70 1.0 (reference)   
    CT 267 299 0.9 (0.7, 1.0) 89 0.8 (0.6, 1.1) 67 0.8 (0.6, 1.0) 23 0.8 (0.5, 1.3) 39 1.3 (0.8, 2.0)   
    TT 26 18 0.5 (0.3, 1.0) 0.6 (0.2, 1.4) 0.2 (0.1, 0.9) ∼ 1.7 (0.6, 4.6)   
    P trend   .02  .07  .01  .09  .1   
    CT+TT 293 317 0.8 (0.7, 1.0) 95 0.8 (0.6, 1.0) 69 0.7 (0.5, 1.0) 23 0.7 (0.4, 1.2) 44 1.3 (0.9, 2.0) .06 DLBCL, FL vs MZ, CLL/SLL; P = .02 
XRCC1 Ex6-22C>T, R194W, rs1799782              
    CC 782 911 1.0 (reference) 287 1.0 (reference) 217 1.0 (reference) 72 1.0 (reference) 91 1.0 (reference)   
    CT 112 186 1.4 (1.1, 1.8) 52 1.2 (0.9, 1.8) 41 1.3 (0.9, 1.9) 19 1.8 (1.0, 3.0) 24 2.0 (1.2, 3.3)   
    TT 1.2 (0.4, 3.2) 1.7 (0.5, 6.0) 2.6 (0.7, 9.0) ∼ ∼   
    P trend   .01  .2  .07  .2  .03   
    CT+TT 119 195 1.4 (1.1, 1.8) 56 1.3 (0.9, 1.8) 45 1.4 (0.9, 2.0) 19 1.6 (0.9, 2.8) 24 1.9 (1.1, 3.1) .5 CLL/SLL vs DLBCL, FL, MZ; P = .06 
MGMT Ex7+13A>G, I143V, rs2308321              
    AA 722 861 1.0 (reference) 271 1.0 (reference) 192 1.0 (reference) 76 1.0 (reference) 91 1.0 (reference)   
    AG 166 234 1.1 (0.9, 1.4) 67 1.0 (0.7, 1.4) 67 1.4 (1.0, 1.9) 13 0.7 (0.4, 1.4) 23 1.0 (0.6, 1.7)   
    GG 10 14 1.1 (0.5, 2.4) 0.9 (0.3, 3.0) 1.6 (0.5, 4.7) 1.0 (0.1, 7.9) 1.5 (0.3, 7.0)   
    P trend   .4  .9  .06  .4  .8   
    AG+GG 176 248 1.1 (0.9, 1.4) 71 1.0 (0.7, 1.4) 72 1.4 (1.0, 1.9) 14 0.8 (0.4, 1.4) 25 1.0 (0.6, 1.7) .3 FL vs DLBCL, MZ, CLL/SLL; P = .05 
NAT1              
    Any/any 454 546 1.0 (reference) 166 1.0 (reference) 137 1.0 (reference) 41 1.0 (reference) 57 1.0 (reference)   
    *10/any 251 303 1.1 (0.9, 1.3) 106 1.2 (0.9, 1.7) 59 0.9 (0.6, 1.2) 25 1.1 (0.6, 1.8) 36 1.2 (0.8, 1.9)   
    *10/*10 41 66 1.6 (1.0, 2.4) 18 1.4 (0.8, 2.6) 19 2.0 (1.1, 3.6) 1.4 (0.5, 4.0) 0.9 (0.3, 2.7)   
    P trend   .1  .1  .4  .5  .6   
    *10/any + *10/*10 292 369 1.1 (0.9, 1.4) 124 1.3 (0.9, 1.7) 78 1.0 (0.7, 1.4) 30 1.1 (0.7, 1.9) 40 1.2 (0.8, 1.9) .6 DLBCL, CLL/SLL vs FL, MZ; P = .07 
NAT2              
    Slow 452 522 1.0 (reference) 172 1.0 (reference) 113 1.0 (reference) 37 1.0 (reference) 59 1.0 (reference)   
    Intermediate 306 390 1.2 (1.0, 1.4) 114 1.0 (0.8, 1.4) 103 1.5 (1.1, 2.0) 44 1.8 (1.1, 2.8) 39 1.0 (0.7, 1.6)   
    Rapid 50 72 1.4 (1.0, 2.2) 25 1.5 (0.9, 2.6) 16 1.5 (0.8, 2.8) 0.2 (0.0, 1.8) 1.4 (0.6, 3.3)   
    P trend   .03  .2  .02  .4  .5   
    Intermediate/rapid 356 462 1.2 (1.0, 1.5) 139 1.1 (0.8, 1.5) 119 1.5 (1.1, 2.0) 45 1.6 (1.0, 2.5) 46 1.1 (0.7, 1.7) .3 FL vs DLBCL, MZ, CLL/SLL; P = .02 
ExposureControls,NAll NHL combined*
DLBCL
Follicular lymphoma
Marginal zone lymphoma
CLL/SLL
P homo-geneityLowest P value from pairwise analysis§
NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)NOR (95% CI)
TNF G-308A, rs1800629              
    GG 696 799 1.0 (reference) 236 1.0 (reference) 196 1.0 (reference) 64 1.0 (reference) 94 1.0 (reference)   
    GA 207 298 1.3 (1.0, 1.6) 102 1.5 (1.1, 2.0) 67 1.1 (0.8, 1.6) 23 1.3 (0.8, 2.2) 23 0.8 (0.5, 1.3)   
    AA 18 38 2.0 (1.1, 3.6) 16 2.9 (1.4, 5.8) 1.4 (0.6, 3.5) 3.6 (1.3, 10.2) 0.4 (0.1, 3.1)   
    P trend   .002  <.001  .3  .03  .2   
    GA+AA 225 336 1.3 (1.1, 1.6) 118 1.6 (1.2, 2.1) 74 1.2 (0.9, 1.6) 28 1.5 (0.9, 2.4) 24 0.8 (0.5, 1.2) .04 DLBCL, MZ vs FL, CLL/SLL; P = .002 
IL10 T-3575A, rs1800890              
    TT 379 446 1.0 (reference) 134 1.0 (reference) 98 1.0 (reference) 44 1.0 (reference) 49 1.0 (reference)   
    TA 401 518 1.1 (0.9, 1.4) 165 1.2 (0.9, 1.6) 129 1.2 (0.9, 1.7) 38 0.9 (0.5, 1.4) 45 0.9 (0.6, 1.3)   
    AA 130 164 1.1 (0.8, 1.4) 54 1.1 (0.8, 1.7) 41 1.2 (0.8, 1.8) 10 0.7 (0.4, 1.5) 23 1.3 (0.7, 2.2)   
    P trend   .4  .3  .3  .3  .6   
    TA+AA 531 682 1.1 (0.9, 1.3) 219 1.2 (0.9, 1.5) 170 1.2 (0.9, 1.6) 48 0.8 (0.5, 1.3) 68 1.0 (0.6, 1.4) .3 DLBCL, FL vs MZ, CLL/SLL; P = .08 
FCGR2A Ex4-120G>A, R165H, rs1801274              
    GG 242 237 1.0 (reference) 78 1.0 (reference) 51 1.0 (reference) 19 1.0 (reference) 23 1.0 (reference)   
    AG 430 539 1.3 (1.0, 1.6) 164 1.2 (0.8, 1.6) 135 1.4 (1.0, 2.1) 40 1.2 (0.7, 2.1) 60 1.5 (0.9, 2.4)   
    AA 227 335 1.5 (1.1, 1.9) 102 1.3 (0.9, 1.9) 79 1.5 (1.0, 2.3) 31 1.7 (0.9, 3.1) 32 1.5 (0.8, 2.7)   
    P trend   .004  .1  .04  .08  .2   
    AG+AA 657 874 1.3 (1.1, 1.6) 266 1.2 (0.9, 1.6) 214 1.5 (1.0, 2.1) 71 1.4 (0.8, 2.3) 92 1.5 (0.9, 2.4) .8 FL vs DLBCL, MZ, CLL/SLL; P = .09 
RAG1 Ex2+2473A>G, K820R, rs2227973              
    AA 695 810 1.0 (reference) 258 1.0 (reference) 190 1.0 (reference) 59 1.0 (reference) 86 1.0 (reference)   
    AG 179 246 1.1 (0.9, 1.4) 73 1.1 (0.8, 1.5) 57 1.2 (0.8, 1.7) 29 1.7 (1.1, 2.8) 26 1.2 (0.8, 2.0)   
    GG 17 35 1.8 (1.0, 3.4) 1.4 (0.5, 3.4) 10 2.8 (1.2, 6.4) 2.0 (0.6, 6.5) 1.8 (0.5, 6.7)   
    P trend   .05  .4  .05  .02  .3   
    AG+GG 196 281 1.2 (1.0, 1.5) 80 1.1 (0.8, 1.5) 67 1.3 (0.9, 1.8) 33 1.8 (1.1, 2.8) 29 1.3 (0.8, 2.0) .3 MZ vs DLBCL, FL, CLL/SLL; P = .03 
LIG4 Ex3+54C>T, T9I, rs1805388              
    CC 611 788 1.0 (reference) 247 1.0 (reference) 197 1.0 (reference) 67 1.0 (reference) 70 1.0 (reference)   
    CT 267 299 0.9 (0.7, 1.0) 89 0.8 (0.6, 1.1) 67 0.8 (0.6, 1.0) 23 0.8 (0.5, 1.3) 39 1.3 (0.8, 2.0)   
    TT 26 18 0.5 (0.3, 1.0) 0.6 (0.2, 1.4) 0.2 (0.1, 0.9) ∼ 1.7 (0.6, 4.6)   
    P trend   .02  .07  .01  .09  .1   
    CT+TT 293 317 0.8 (0.7, 1.0) 95 0.8 (0.6, 1.0) 69 0.7 (0.5, 1.0) 23 0.7 (0.4, 1.2) 44 1.3 (0.9, 2.0) .06 DLBCL, FL vs MZ, CLL/SLL; P = .02 
XRCC1 Ex6-22C>T, R194W, rs1799782              
    CC 782 911 1.0 (reference) 287 1.0 (reference) 217 1.0 (reference) 72 1.0 (reference) 91 1.0 (reference)   
    CT 112 186 1.4 (1.1, 1.8) 52 1.2 (0.9, 1.8) 41 1.3 (0.9, 1.9) 19 1.8 (1.0, 3.0) 24 2.0 (1.2, 3.3)   
    TT 1.2 (0.4, 3.2) 1.7 (0.5, 6.0) 2.6 (0.7, 9.0) ∼ ∼   
    P trend   .01  .2  .07  .2  .03   
    CT+TT 119 195 1.4 (1.1, 1.8) 56 1.3 (0.9, 1.8) 45 1.4 (0.9, 2.0) 19 1.6 (0.9, 2.8) 24 1.9 (1.1, 3.1) .5 CLL/SLL vs DLBCL, FL, MZ; P = .06 
MGMT Ex7+13A>G, I143V, rs2308321              
    AA 722 861 1.0 (reference) 271 1.0 (reference) 192 1.0 (reference) 76 1.0 (reference) 91 1.0 (reference)   
    AG 166 234 1.1 (0.9, 1.4) 67 1.0 (0.7, 1.4) 67 1.4 (1.0, 1.9) 13 0.7 (0.4, 1.4) 23 1.0 (0.6, 1.7)   
    GG 10 14 1.1 (0.5, 2.4) 0.9 (0.3, 3.0) 1.6 (0.5, 4.7) 1.0 (0.1, 7.9) 1.5 (0.3, 7.0)   
    P trend   .4  .9  .06  .4  .8   
    AG+GG 176 248 1.1 (0.9, 1.4) 71 1.0 (0.7, 1.4) 72 1.4 (1.0, 1.9) 14 0.8 (0.4, 1.4) 25 1.0 (0.6, 1.7) .3 FL vs DLBCL, MZ, CLL/SLL; P = .05 
NAT1              
    Any/any 454 546 1.0 (reference) 166 1.0 (reference) 137 1.0 (reference) 41 1.0 (reference) 57 1.0 (reference)   
    *10/any 251 303 1.1 (0.9, 1.3) 106 1.2 (0.9, 1.7) 59 0.9 (0.6, 1.2) 25 1.1 (0.6, 1.8) 36 1.2 (0.8, 1.9)   
    *10/*10 41 66 1.6 (1.0, 2.4) 18 1.4 (0.8, 2.6) 19 2.0 (1.1, 3.6) 1.4 (0.5, 4.0) 0.9 (0.3, 2.7)   
    P trend   .1  .1  .4  .5  .6   
    *10/any + *10/*10 292 369 1.1 (0.9, 1.4) 124 1.3 (0.9, 1.7) 78 1.0 (0.7, 1.4) 30 1.1 (0.7, 1.9) 40 1.2 (0.8, 1.9) .6 DLBCL, CLL/SLL vs FL, MZ; P = .07 
NAT2              
    Slow 452 522 1.0 (reference) 172 1.0 (reference) 113 1.0 (reference) 37 1.0 (reference) 59 1.0 (reference)   
    Intermediate 306 390 1.2 (1.0, 1.4) 114 1.0 (0.8, 1.4) 103 1.5 (1.1, 2.0) 44 1.8 (1.1, 2.8) 39 1.0 (0.7, 1.6)   
    Rapid 50 72 1.4 (1.0, 2.2) 25 1.5 (0.9, 2.6) 16 1.5 (0.8, 2.8) 0.2 (0.0, 1.8) 1.4 (0.6, 3.3)   
    P trend   .03  .2  .02  .4  .5   
    Intermediate/rapid 356 462 1.2 (1.0, 1.5) 139 1.1 (0.8, 1.5) 119 1.5 (1.1, 2.0) 45 1.6 (1.0, 2.5) 46 1.1 (0.7, 1.7) .3 FL vs DLBCL, MZ, CLL/SLL; P = .02 

CLL/SLL indicates chronic lymphocytic leukemia/small lymphocytic lymphoma; DLBCL, diffuse large B-cell lymphoma; LIG4, DNA ligase IV; FCGR2A, Fc-gamma receptor IIA; FL, follicular lymphoma; IL10, interleukin-10; MZ, marginal zone lymphoma; MGMT, O-6-methylguanine DNA methyltransferase; NAT, N-acetyltransferase; NHL, non-Hodgkin lymphoma; RAG1, recombination-activating gene 1; TNF, tumor necrosis factor; and XRCC1, X-ray repair cross-complementing 1.

*

Includes all NHL cases in the study, regardless of histologic subtype (N = 1320, excludes one DLBCL case resulting from missing data on education).

Counts may not sum to the total because of missing data. For some exposures (see Table 1), a split-sample design was used so that only approximately 50% of participants were expected to provide information.

Odds ratios (95% CIs) estimated using polytomous logistic regression models, adjusted for age, sex, race, study center, and education.

§

To account for the seven comparisons within the pairwise analysis, we applied a Bonferroni correction and considered P values < 0.007 to be statistically significant.

Risks for a single NHL subtype

DLBCL.

Late birth order increased the risk of DLBCL more than other NHL subtypes (P homogeneity = .2; DLBCL vs other subtypes, pairwise analysis P = .003; Table 1). Among people with at least one sibling, being last born elevated risk of DLBCL 1.9-fold (95% CI, 1.2-2.8). High BMI (35+ vs < 25 kg/m2, OR = 1.7, 95% CI, 1.1-2.5) also increased the risk of DLBCL but not of the other NHL subtypes (P homogeneity = .008; pairwise analysis P = .01; Table 2).

Marginal zone lymphoma.

A reported history of an autoimmune condition increased risk of marginal zone lymphoma (OR = 2.9; 95% CI, 1.6-5.4) but not of other NHL subtypes (P homogeneity = .01; marginal zone vs others, pairwise analysis P < .001; Table 1). Risk estimates were also higher for marginal zone lymphoma than for other NHL subtypes for patients in the highest tertile of PCB180 levels in carpet dust (OR = 3.0; 95% CI, 1.5-6.1; P homogeneity = .04; pairwise analysis P = .01; Table 3).

CLL/SLL.

Intake of heterocyclic amines formed when meat is cooked well done by high-temperature cooking techniques increased risk of CLL/SLL but not of other NHL subtypes (Table 2). High levels of 2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline (MeIQx) elevated CLL/SLL risk 3-fold (OR = 3.0; 95% CI, 1.5-5.9; P homogeneity < .001; CLL/SLL vs others, pairwise analysis P < .001). Similar results were observed for analyses of 2-amino-3,4,8-trimethylimidazo(4,5-f)quinoxaline (DiMeIQx), another heterocyclic amine, and a continuous measure of total mutagenic potential, derived from a database (http://charred.cancer.gov/) constructed from meat cooking methods and the Ames Salmonella test37  (data not shown).

Follicular lymphoma.

Using the criterion that at least 2 of 3 analyses must support differences in risk to infer etiologic heterogeneity, risk estimates were not significantly different for follicular lymphoma compared with other NHL subtypes for any of the risk factors we evaluated. The pairwise analysis did suggest that several risk factors were more pronounced for follicular lymphoma than other NHL subtypes, including height, use of permanent hair dyes before 1980, the variant allele of the MGMT I143V polymorphism, and NAT2 acetylation phenotype (follicular lymphoma vs others, pairwise analysis P = .05, .07, .05, and .02, respectively), but none was at the Bonferroni correction level of less than .007 (Tables 2,Table 34). In addition, the ORs and test for homogeneity did not clearly support these findings.

Risks for multiple NHL subtypes

DLBCL and marginal zone lymphoma.

Persons possessing the variant allele of the TNF G-308A polymorphism had significantly higher risk estimates for DLBCL and marginal zone lymphoma than for follicular lymphoma or CLL/SLL (P homogeneity = .04; pairwise analysis P = .002; DLBCL ORGA/AA = 1.6; 95% CI, 1.2-2.1; marginal zone lymphoma ORGA/AA = 1.5; 95% CI, 0.9-2.4; Table 4). Risk estimates for residential termite treatment before 1988 and increasingly dark eye color were also higher for DLBCL and marginal zone lymphoma than for follicular lymphoma and CLL/SLL, although the pairwise analysis P value was not statistically significant after the Bonferroni correction (termite treatment P = .009, eye color P = .01; Table 3).

DLBCL and CLL/SLL.

Persons consuming higher levels of dietary vitamin B6 had significantly lower risk estimates for DLBCL and CLL/SLL than for follicular or marginal zone lymphoma (P homogeneity = .2; pairwise analysis P = .002; DLBCL OR = 0.6; 95% CI, 0.4-0.8; CLL/SLL OR = 0.5; 95% CI, 0.3-1.0; Table 2).

All NHL subtypes.

We observed no clear pattern of significant heterogeneity among individual NHL subtypes or combinations of subtypes for the remaining environmental and genetic risk factors evaluated (Tables 1,Table 2,Table 34). Risk estimates were strikingly consistent among all 4 NHL subtypes for decreased risk with ethanol consumption, exposure to sunlight, dietary lutein/zeaxanthin, and consumption of cruciferous vegetables, and increased risk with the genetic polymorphisms FCGR2A R165H, RAG1 K820R, and XRCC1 R194W.

We present here the first broad evaluation of risk factor patterns for the 4 most common NHL subtypes. Our analysis included a wide range of putative environmental and genetic risk factors. Our data strongly support the growing body of evidence that there is both distinctiveness and commonality in the etiology of NHL subtypes. Although all lymphomas fundamentally result from immune dysfunction (including immune dysregulation, immunosuppression, immune stimulation, or inflammation), and all cancers fundamentally result from genomic dysregulation, these data also suggest that immune dysfunction is of greater etiologic importance for DLBCL and marginal zone lymphoma than for CLL/SLL and follicular lymphoma.

Understanding of etiologic heterogeneity advances as disease subtypes are increasingly recognized by various characteristics, such as histology, site, or molecular features. However, studies that consider disease subtype require formal statistical tests to evaluate the likelihood that variation in risk estimates arise by chance. Because simple case-case comparisons are not sufficient for testing etiologic heterogeneity when there are greater than 2 disease subtypes, we used 3 methods to evaluate patterns of risk among the 4 most common NHL subtypes: magnitude of the ORs, test for homogeneity across the 4 subtypes, and analysis of all possible pairwise comparisons.

The combination of results from all 3 of our analyses revealed a fairly consistent portrait of etiologic heterogeneity among NHL subtypes. Specifically, our data were suggestive that 7 risk factors (the TNF G-308A polymorphism, reported history of autoimmune conditions, late birth order, obesity, increasingly dark eye color, residential termite treatment before 1988, and exposure to PCB180) increase risk for DLBCL and/or marginal zone lymphoma but not follicular lymphoma or CLL/SLL. We hypothesize that these risk factors contribute to lymphomagenesis via immune dysfunction. The TNF G-308A polymorphism and history of autoimmune conditions, both established risk factors for NHL, are the strongest surrogates for immune dysfunction. The TNF G-308A polymorphism was shown to increase risk of DLBCL but not follicular lymphoma in a pooled analysis of 8 studies, including ours.11  Risk estimates for marginal zone lymphoma have not been published in studies other than ours.34 TNF encodes an immunoregulatory cytokine (TNF-α) that mediates inflammation by activating the nuclear factor-κB pathway.38  The variant allele of the G-308A polymorphism may be associated with higher levels of TNF-α, contributing to chronic inflammation.39  Similarly, some autoimmune conditions, such as lupus erythematosus or Sjogren syndrome, may increase risk of NHL through chronic immune stimulation and B-cell proliferation.40  Previous studies of autoimmunity have observed greater increased risks for marginal zone lymphoma and DLBCL than for other B-cell lymphomas.40-42 

The associations between NHL or specific NHL subtypes and obesity, late birth order, increasingly dark eye color, residential termite treatment before 1988, and exposure to PCB180 are less well established.3  The data for NHL subtypes are inconsistent for birth order24,43-46  and limited for residential termite treatment before 1988,23  exposure to PCBs,47  and eye color27,48 ; nevertheless, hypothesized mechanisms are clearly immune-related for late birth order and exposure to PCBs. Late birth order may be a surrogate for earlier exposure to infections, resulting in an earlier shift from a Th2 to a Th1 immune response,24  and PCBs have been shown to be immunotoxic and to alter immune function.47  Obesity has been associated with DLBCL in some studies49,50  and has been hypothesized to lead to inflammation.51,52  Exposure to residential termite treatments before 1988, when chlordane was banned, may alter immune function,53  but the data are sparse. We measured eye color as an indicator of host susceptibility to sunlight, which protects against NHL; however, we observed no heterogeneity in risk estimates by lymphoma subtype for our direct measures of sun exposure. We recently reported that only persons with at least one variant allele for the TNF G-308A and IL10 T-3575A polymorphisms had elevated risk of NHL associated with history of autoimmune conditions, late birth order, obesity, dark eye color, and residential termite treatment before 1988,54  supporting the hypothesis that these risk factors act partly through immune dysfunction.

One reason to suspect that immune dysfunction could be particularly important for the development of DLBCL and marginal zone lymphoma is the pattern of risk in patients with severe immunodeficiency. Their most marked elevation in risk occurs for DLBCL and Burkitt lymphoma.1,9,55,56  However, risk estimates from severe immunodeficiency are unknown for marginal zone lymphoma, which was only recently recognized by lymphoma classification systems in 1994.57 

A second pattern emerging from our systematic evaluation is that there may be increased risk for CLL/SLL, but not for the other NHL subtypes, among people with higher levels of dietary heterocyclic amines and mutagens from meat consumption, including MeIQx and DiMeIQx, but not PhIP. Animal studies have demonstrated that lymphomas can be induced by exposure to various carcinogenic and genotoxic aromatic and heterocyclic amines formed when meats are cooked at high temperatures.58-61  However, epidemiologic investigations of NHL in relation to these exposures have yielded conflicting results,62  possibly because few studies have evaluated risks by NHL subtype. Whether, as these data suggest, direct DNA damage from environmental carcinogens influences the development of CLL/SLL needs further testing in other studies.

Follicular lymphoma did not present a distinct risk factor profile. However, several risk factors appeared to increase risk of follicular lymphoma more than other NHL subtypes, including height; use of permanent hair dyes before 1980, when hair dye formulations changed and several putative carcinogens were removed; the I143V polymorphism in MGMT, a DNA repair gene; and NAT2 acetylation phenotype, which modifies heterocyclic and aromatic amine metabolism. The specific association for follicular lymphoma has been reported in other studies for both hair dyes63,64  and MGMT,65  but NHL subtype risk estimates for NAT2 acetylation phenotype have not been published in studies other than ours.36  The published literature on height is inconsistent. As with CLL/SLL, our findings are consistent with the role of direct DNA damage from environmental carcinogens in the development of follicular lymphoma, but do not provide strong evidence and require replication in other studies.

The interpretation of our finding for vitamin B6 is unclear. We observed that persons consuming higher levels of dietary vitamin B6 had significantly lower risk estimates for DLBCL and CLL/SLL than for follicular or marginal zone lymphoma. Vitamin B6 protects against DNA damage and has been implicated in various cancers,66  but its role in lymphomagenesis is not well established.62 

Finally, we observed no clear pattern of heterogeneity among NHL subtypes for numerous risk factors. Risk estimates most strikingly consistent for decreased risk among the 4 NHL subtypes were ethanol consumption, exposure to sunlight, dietary lutein/zeaxanthin, and consumption of cruciferous vegetables, whereas increased risks were observed with genetic polymorphisms in FCGR2A, RAG1, and XRCC1. It is possible that we did not observe heterogeneity for risk factors that do differ by subtype because of chance, insufficient sample size particularly for rare exposures, exposure misclassification, or effect modification. Alternatively, it is plausible that these risk factors are common to all NHL subtypes.

The observation that B-cell lymphomas appear to be “frozen” at specific stages of B-cell development is a key element of their classification and nomenclature.1  The postulated cell of origin for CLL/SLL is not thought to have undergone germinal center transit. In contrast, follicular lymphoma DLBCL and marginal zone lymphoma correspond to germinal center or post–germinal center B cells. Specifically, follicular lymphoma arises primarily in centrocytes, germinal center B cells undergoing somatic hypermutation to increase antigen affinity; DLBCL arises in centroblasts (rapidly proliferating germinal center B cells) or post–germinal center B cells; and marginal zone lymphoma arises in memory B cells. We note the relative importance of risk factors that may induce lymphomagenesis via immune dysfunction for DLBCL and marginal zone lymphoma, which is consistent with our understanding that both subtypes arise in phases of B-cell differentiation that are most dependent on immune stimulation.

The main strength of this analysis is the comprehensive, systematic analysis of a broad range of putative environmental and genetic risk factors in a population-based study with detailed information on both exposure and disease. Interpretation of our results should also take into account several limitations. Our risk estimates may have been biased because of differential recall of exposure between cases and controls. It is also possible that our risk estimates were biased against finding an association for the more aggressive NHL subtypes for those risk factors also associated with prognosis because we excluded deceased cases. Although we queried participants on their dietary habits before 1 year before diagnosis or interview, our findings may represent reverse causality because of recent changes in diet reported by patients with insidious types of NHL, rather than true etiologic differences. Some exposures, such as autoimmune conditions, are heterogeneous entities themselves and may have differential effects on lymphoma risk, but power considerations necessitated collapsing them together. We could not assess the independence of the risk factors we identified as being important because we did not have sufficient power to simultaneously model multiple risk factors, particularly for rare exposures. Because the statistical approaches we used have greater power in different circumstances, the results of the tests were not always consistent. The pairwise analysis is also sensitive to differences in sample size among the comparison groups, giving more weight to larger groups. We did not control for the number of risk factors for which we evaluated heterogeneity because this was an exploratory analysis. Our results reflect just one individual study, and we did not include analyses of all possible risk factors for which we had data; thus, we may have missed specific patterns because of either false-positive or false-negative results in our study. In addition, because many of the risk factors we evaluated only modestly affect lymphoma risk, most of the differences among subtypes we observed were small. Finally, there may have been misclassification among the lymphoma subtypes.

In conclusion, careful dissection of risk factor patterns by disease subtype reveals important clues about lymphomagenesis. Replication of our results is required with larger sample sizes, such as in pooled and/or meta-analyses, and in other studies with high-quality, detailed data on both exposure and disease. Nevertheless, these data clearly support both commonality and heterogeneity in the etiology of lymphoma subtypes, and suggest that immune dysfunction is of greater etiologic importance for DLBCL and marginal zone lymphoma than for CLL/SLL and follicular lymphoma.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

The authors thank the staff and scientists at the SEER centers of Iowa, Los Angeles, Detroit, and Seattle for the conduct of the study's field effort; the Centers for Medicare & Medicaid Services for selection of older controls; Carol Haines (Westat, Inc) for development of study materials and procedures, for selection of younger controls and for study coordination; Mary McAdams, Pete Hui, Lonn Irish, and Michael Stagner (Information Management Services, Inc) for programming support; and Geoffrey Tobias for research assistance.

This research was supported by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, and Public Health Service (contracts N01-PC-65064, N01-PC-67008, N01-PC-67009, N01-PC-67010, N02-PC-71105).

National Institutes of Health

Contribution: P.H., J.S.C., J.R.C., W.C., S.D., and R.K.S. obtained funding and oversaw data collection; P.H., J.S.C., J.R.C., W.C., S.D., R.K.S., M.S.L., N.R., A.B., L.B., C.F.L., M.S., S.H.Z., and M.A.V. oversaw data collection; L.M.M., P.H., N.C., and S.S.W. designed analysis; L.M.M., N.C., and S.W. performed statistical analysis; L.M.M., P.H., and S.S.W. drafted the manuscript; and all authors created exposure variables and revised the manuscript.

Conflict-of-interest disclosure: D.W.H. serves as a consultant for hair dye manufacturers. The remaining authors declare no competing financial interests.

Correspondence: Lindsay M. Morton, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, 6120 Executive Boulevard, EPS 7040, MSC#7238, Rockville, MD 20852; e-mail: mortonli@mail.nih.gov.

1
World Health Organization
Jaffe
 
ES
Harris
 
NL
Stein
 
H
Vardiman
 
JW
Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues.
World Health Organization Classification of Tumours
2001
Lyon, France
IARC Press
2
Hartge
 
P
Wang
 
SS
Bracci
 
PM
Devesa
 
SS
Holly
 
EA
Schottenfeld
 
D
Fraumeni
 
JF
Non-Hodgkin lymphoma.
Cancer Epidemiology and Prevention
2006
New York, NY
Oxford University Press
3
Alexander
 
D
Mink
 
P
Adami
 
HO
et al. 
The non-Hodgkin lymphomas: a review of the epidemiologic literature.
Int J Cancer
2007
, vol. 
120
 (pg. 
1
-
39
)
4
Groves
 
F
Linet
 
M
Travis
 
L
et al. 
Cancer surveillance series: non-Hodgkin's lymphoma incidence by histologic subtype in the United States from 1978 through 1995.
J Natl Cancer Inst
2000
, vol. 
92
 (pg. 
1240
-
1251
)
5
Eltom
 
MA
Jemal
 
A
Mbulaiteye
 
SM
et al. 
Trends in Kaposi's sarcoma and non-Hodgkin's lymphoma incidence in the United States from 1973 through 1998.
J Natl Cancer Inst
2002
, vol. 
94
 (pg. 
1204
-
1210
)
6
Morton
 
LM
Wang
 
SS
Devesa
 
SS
et al. 
Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001.
Blood
2006
, vol. 
107
 (pg. 
265
-
276
)
7
Manns
 
A
Hisada
 
M
Grenade
 
LL
Human T-lymphotropic virus type I infection.
Lancet
1999
, vol. 
353
 (pg. 
1951
-
1958
)
8
Suarez
 
F
Lortholary
 
O
Hermine
 
O
et al. 
Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation.
Blood
2006
, vol. 
107
 (pg. 
3034
-
3044
)
9
Coté
 
T
Biggar
 
RJ
Rosenberg
 
PS
et al. 
AIDS/Cancer Study Group
Non-Hodgkin's lymphoma among people with AIDS: incidence, presentation and public health burden.
Int J Cancer
1997
, vol. 
73
 (pg. 
645
-
650
)
10
de Sanjose
 
S
Benavente
 
Y
Vajdic
 
CM
et al. 
Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium.
Clin Gastroenterol Hepatol
2008
, vol. 
6
 (pg. 
451
-
458
)
11
Rothman
 
N
Skibola
 
CF
Wang
 
SS
et al. 
Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium.
Lancet Oncol
2006
, vol. 
7
 (pg. 
27
-
38
)
12
Wang
 
SS
Slager
 
SL
Brennan
 
P
et al. 
Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the International Lymphoma Epidemiology Consortium (InterLymph).
Blood
2007
, vol. 
109
 (pg. 
3479
-
3488
)
13
Schroeder
 
JC
Olshan
 
A
Baric
 
R
et al. 
Agricultural risk factors for t(14;18) subtypes of non-Hodgkin's lymphoma.
Epidemiology
2001
, vol. 
12
 (pg. 
701
-
709
)
14
Schroeder
 
J
Olshan
 
A
Baric
 
R
et al. 
A case-control study of tobacco use and other non-occupational risk factors for t(14;18) subtypes of non-Hodgkin's lymphoma (United States).
Cancer Causes Control
2002
, vol. 
13
 (pg. 
159
-
168
)
15
Chiu
 
BCH
Dave
 
BJ
Blair
 
A
et al. 
Agricultural pesticide use and risk of t(14;18)-defined subtypes of non-Hodgkin lymphoma.
Blood
2006
, vol. 
108
 (pg. 
1363
-
1369
)
16
Chiu
 
BCH
Dave
 
BJ
Blair
 
A
et al. 
Cigarette smoking, familial hematopoietic cancer, hair dye use, and risk of t(14;18)-defined subtypes of non-Hodgkin's lymphoma.
Am J Epidemiol
2007
, vol. 
165
 (pg. 
652
-
659
)
17
Chatterjee
 
N
Hartge
 
P
Cerhan
 
JR
et al. 
Risk of non-Hodgkin's lymphoma and family history of lymphatic, hematologic, and other cancers.
Cancer Epidemiol Biomarkers Prev
2004
, vol. 
13
 (pg. 
1415
-
1421
)
18
Percy
 
C
Van Holten
 
V
Muir
 
C
International Classification of Diseases for Oncology.
1990
2nd edition.
Geneva, Switzerland
World Health Organization
19
Morton
 
LM
Turner
 
JJ
Cerhan
 
JR
et al. 
Proposed classification of lymphoid neoplasms for epidemiologic research from the International Lymphoma Epidemiology Consortium (InterLymph).
Blood
2007
, vol. 
110
 (pg. 
695
-
708
)
20
Cerhan
 
JR
Bernstein
 
L
Severson
 
RK
et al. 
Anthropometrics, physical activity, related medical conditions, and the risk of non-Hodgkin lymphoma.
Cancer Causes Control
2005
, vol. 
16
 (pg. 
1203
-
1214
)
21
Colt
 
JS
Severson
 
RK
Lubin
 
J
et al. 
Organochlorines in carpet dust and non-Hodgkin lymphoma.
Epidemiology
2005
, vol. 
16
 (pg. 
516
-
525
)
22
Cerhan
 
JR
Engels
 
EA
Cozen
 
W
et al. 
Blood transfusion, anesthesia, surgery and risk of non-Hodgkin lymphoma in a population-based case-control study.
2008
, vol. 
123
 (pg. 
888
-
894
)
23
Colt
 
JS
Davis
 
S
Severson
 
RK
et al. 
Residential insecticide use and risk of non-Hodgkin's lymphoma.
Cancer Epidemiol Biomarkers Prev
2006
, vol. 
15
 (pg. 
251
-
257
)
24
Cozen
 
W
Cerhan
 
J
Martinez-Maza
 
O
et al. 
The effect of atopy, childhood crowding, and other immune-related factors on non-Hodgkin lymphoma risk.
Cancer Causes Control
2007
, vol. 
18
 (pg. 
821
-
831
)
25
Cross
 
AJ
Ward
 
MH
Schenk
 
M
et al. 
Meat and meat-mutagen intake and risk of non-Hodgkin lymphoma: results from a NCI-SEER case-control study.
Carcinogenesis
2006
, vol. 
27
 (pg. 
293
-
297
)
26
Engels
 
EA
Cerhan
 
JR
Linet
 
MS
et al. 
Immune-related conditions and immune-modulating medications as risk factors for non-Hodgkin's lymphoma: a case-control study.
Am J Epidemiol
2005
, vol. 
162
 (pg. 
1153
-
1161
)
27
Hartge
 
P
Lim
 
U
Freedman
 
DM
et al. 
Ultraviolet radiation, dietary vitamin D, and risk of non-Hodgkin lymphoma (United States).
Cancer Causes Control
2006
, vol. 
17
 (pg. 
1045
-
1052
)
28
Hill
 
DA
Wang
 
SS
Cerhan
 
JR
et al. 
Risk of non-Hodgkin lymphoma (NHL) in relation to germline variation in DNA repair and related genes.
Blood
2006
, vol. 
108
 (pg. 
3161
-
3167
)
29
Kelemen
 
LE
Cerhan
 
JR
Lim
 
U
et al. 
Vegetables, fruit, and antioxidant-related nutrients and risk of non-Hodgkin lymphoma: a National Cancer Institute-Surveillance, Epidemiology, and End Results population-based case-control study.
Am J Clin Nutr
2006
, vol. 
83
 (pg. 
1401
-
1410
)
30
Lim
 
U
Schenk
 
M
Kelemen
 
LE
et al. 
Dietary determinants of one-carbon metabolism and the risk of non-Hodgkin's lymphoma: NCI-SEER case-control study, 1998-2000.
Am J Epidemiol
2005
, vol. 
162
 (pg. 
953
-
964
)
31
Lim
 
U
Wang
 
SS
Hartge
 
P
et al. 
Gene-nutrient interactions among determinants of folate and one-carbon metabolism on the risk of non-Hodgkin lymphoma: NCI-SEER Case-Control Study.
Blood
2007
, vol. 
109
 (pg. 
3050
-
3059
)
32
Morton
 
LM
Hartge
 
P
Holford
 
TR
et al. 
Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the InterLymph consortium.
Cancer Epidemiol Biomarkers Prev
2005
, vol. 
14
 (pg. 
925
-
933
)
33
Morton
 
LM
Zheng
 
T
Holford
 
TR
et al. 
Alcohol consumption and risk of non-Hodgkin lymphoma: a pooled analysis.
Lancet Oncol
2005
, vol. 
6
 (pg. 
469
-
476
)
34
Wang
 
SS
Cerhan
 
JR
Hartge
 
P
et al. 
Common genetic variants in proinflammatory and other immunoregulatory genes and risk for non-Hodgkin lymphoma.
Cancer Res
2006
, vol. 
66
 (pg. 
9771
-
9780
)
35
Packer
 
BR
Yeager
 
M
Burdett
 
L
et al. 
SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes.
Nucleic Acids Res
2006
, vol. 
34
 (pg. 
D617
-
D621
)
36
Morton
 
LM
Schenk
 
M
Hein
 
DW
et al. 
Genetic variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2) and risk of non-Hodgkin lymphoma.
Pharmacogenet Genomics
2006
, vol. 
16
 (pg. 
537
-
545
)
37
Ames
 
BN
Mccann
 
J
Yamasaki
 
E
Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test.
Mutat Res
1975
, vol. 
31
 (pg. 
347
-
364
)
38
Inoue
 
J
Gohda
 
J
Akiyama
 
T
Semba
 
K
NF-kappaB activation in development and progression of cancer.
Cancer Sci
2007
, vol. 
98
 (pg. 
268
-
274
)
39
Bayley
 
J
Ottenhoff
 
T
Verweij
 
C
Is there a future for TNF promoter polymorphisms.
Genes Immun
2004
, vol. 
5
 (pg. 
315
-
329
)
40
Smedby
 
KE
Baecklund
 
E
Askling
 
J
Malignant lymphomas in autoimmunity and inflammation: a review of risks, risk factors, and lymphoma characteristics.
Cancer Epidemiol Biomarkers Prev
2006
, vol. 
15
 (pg. 
2069
-
2077
)
41
Hansen
 
A
Lipsky
 
P
Dorner
 
T
B-cell lymphoproliferation in chronic inflammatory rheumatic diseases.
Nat Clin Pract Rheumatol
2007
, vol. 
3
 (pg. 
561
-
569
)
42
Smedby
 
KE
Vajdic
 
CM
Falster
 
M
et al. 
Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium.
Blood
2008
, vol. 
111
 (pg. 
4029
-
4038
)
43
Grulich
 
AE
Vajdic
 
CM
Kaldor
 
JM
et al. 
Birth order, atopy, and risk of non-Hodgkin lymphoma.
J Natl Cancer Inst
2005
, vol. 
97
 (pg. 
587
-
594
)
44
Bracci
 
PM
Dalvi
 
TB
Holly
 
EA
Residential history, family characteristics and non-Hodgkin lymphoma, a population-based case-control study in the San Francisco Bay Area.
Cancer Epidemiol Biomarkers Prev
2006
, vol. 
15
 (pg. 
1287
-
1294
)
45
Altieri
 
A
Castro
 
F
Bermejo
 
JL
et al. 
Number of siblings and the risk of lymphoma, leukemia, and myeloma by histopathology.
Cancer Epidemiol Biomarkers Prev
2006
, vol. 
15
 (pg. 
1281
-
1286
)
46
Becker
 
N
de Sanjose
 
S
Nieters
 
A
et al. 
Birth order, allergies and lymphoma risk: results of the European collaborative research project Epilymph.
Leuk Res
2007
, vol. 
31
 (pg. 
1365
-
1372
)
47
Engel
 
LS
Lan
 
Q
Rothman
 
N
Polychlorinated biphenyls and non-Hodgkin lymphoma.
Cancer Epidemiol Biomarkers Prev
2007
, vol. 
16
 (pg. 
373
-
376
)
48
Smedby
 
KE
Hjalgrim
 
H
Melbye
 
M
et al. 
Ultraviolet radiation exposure and risk of malignant lymphomas.
J Natl Cancer Inst
2005
, vol. 
97
 (pg. 
199
-
209
)
49
Larsson
 
S
Wolk
 
A
Obesity and risk of non-Hodgkin's lymphoma: a meta-analysis.
Int J Cancer
2007
, vol. 
121
 (pg. 
1564
-
1570
)
50
Willett
 
EV
Morton
 
LM
Hartge
 
P
et al. 
Non-Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph Consortium.
Int J Cancer
2008
, vol. 
122
 (pg. 
2062
-
2070
)
51
Lamas
 
O
Marti
 
A
Martinez
 
J
Obesity and immunocompetence.
Eur J Clin Nutr
2002
, vol. 
56
 
suppl
(pg. 
S42
-
S45
)
52
Calle
 
EE
Kaaks
 
R
Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms.
Nat Rev Cancer
2004
, vol. 
4
 (pg. 
579
-
591
)
53
McConnachie
 
P
Zahalsky
 
A
Immune alterations in humans exposed to the termiticide technical chlordane.
Arch Environ Health
1992
, vol. 
47
 (pg. 
295
-
301
)
54
Wang
 
SS
Cozen
 
W
Cerhan
 
JR
et al. 
Immune mechanisms in non-Hodgkin lymphoma: joint effects of the TNF G308A and IL10 T3575A polymorphisms with non-Hodgkin lymphoma risk factors.
Cancer Res
2007
, vol. 
67
 (pg. 
5042
-
5054
)
55
Frisch
 
M
Biggar
 
RJ
Engels
 
EA
et al. 
Association of cancer with AIDS-related immunosuppression in adults.
JAMA
2001
, vol. 
285
 (pg. 
1736
-
1745
)
56
Grulich
 
AE
van Leeuwen
 
MT
Falster
 
MO
et al. 
Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis.
Lancet
2007
, vol. 
370
 (pg. 
59
-
67
)
57
Harris
 
N
Jaffe
 
ES
Stein
 
H
et al. 
A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group.
Blood
1994
, vol. 
84
 (pg. 
1361
-
1392
)
58
Ohgaki
 
H
Hasegawa
 
H
Suenaga
 
M
et al. 
Carcinogenicity in mice of a mutagenic compound, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) from cooked foods.
Carcinogenesis
1987
, vol. 
8
 (pg. 
665
-
668
)
59
Esumi
 
H
Ohgaki
 
H
Kohzen
 
E
et al. 
Induction of lymphoma in CDF1 mice by the food mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.
Jpn J Cancer Res
1989
, vol. 
80
 (pg. 
1176
-
1178
)
60
Sorensen
 
I
Mortensen
 
A
Kristiansen
 
E
et al. 
Short-term carcinogenicity testing of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) in E(mu)-pim-1 transgenic mice.
Carcinogenesis
1996
, vol. 
17
 (pg. 
2221
-
2227
)
61
Pfau
 
W
Martin
 
FL
Cole
 
KJ
et al. 
Heterocyclic aromatic amines induce DNA strand breaks and cell transformation.
Carcinogenesis
1999
, vol. 
20
 (pg. 
545
-
551
)
62
Cross
 
AJ
Lim
 
U
The role of dietary factors in the epidemiology of non-Hodgkin's lymphoma.
Leuk Lymphoma
2006
, vol. 
47
 (pg. 
2477
-
2487
)
63
Zhang
 
Y
Holford
 
TR
Leaderer
 
B
et al. 
Hair-coloring product use and risk of non-Hodgkin's lymphoma: a population-based case-control study in Connecticut.
Am J Epidemiol
2004
, vol. 
159
 (pg. 
148
-
154
)
64
de Sanjose
 
S
Benavente
 
Y
Nieters
 
A
et al. 
Association between personal use of hair dyes and lymphoid neoplasms in Europe.
Am J Epidemiol
2006
, vol. 
164
 (pg. 
47
-
55
)
65
Shen
 
M
Purdue
 
MP
Kricker
 
A
et al. 
Polymorphisms in DNA repair genes and risk of non-Hodgkin's lymphoma in New South Wales, Australia.
Haematologica
2007
, vol. 
92
 (pg. 
1180
-
1185
)
66
Ames
 
BN
Wakimoto
 
P
Are vitamin and mineral deficiencies a major cancer risk?
Nat Rev Cancer
2002
, vol. 
2
 (pg. 
694
-
704
)

Supplemental data

Sign in via your Institution