To the editor:

We read with interest the paper by Mougiakakos and colleagues documenting the reduced sensitivity of naturally occurring regulatory T lymphocytes (Tregs) toward oxidative stress-induced cell death.1  The authors show in in vitro experiments that Tregs, compared with CD4+ T cells, are significantly more resistant to cytotoxicity induced by H2O2 or by coculture with granulocytes, and maintain their suppressive activity even with H2O2 levels lethal for effector CD4+ T cells. While we agree with the authors' hypothesis that this feature could contribute to explain Treg enrichment in cancer tissues, where increased levels of oxidative stress occur, we also wish to briefly discuss their observations in the light of other potentially relevant findings.

We previously reported that human Tregs contain high levels of the catecholamines (CA) dopamine, norepinephrine, and epinephrine.2  CA autooxidation occurs spontaneously, leading to formation of oxidative moieties, a process extensively investigated in neurodegeneration.3  In human lymphocytes, CA are synthesized and stored into the cells upon activation with mitogenic stimuli, and pharmacologic inhibition of their production results in reduced activation-induced apoptosis,4  in line with their cytotoxic potential. It is therefore not surprising that Tregs, which contain high amounts of CA,2  are also endowed with high levels of thiols,1  conferring increased resistance to oxidative stress.

CA, however, also provide lymphocytes with an array of transmitters which can act in autocrine/paracrine fashion on cells bearing dopaminergic and/or adrenergic receptors. Indeed, we showed that in human lymphocytes, and in particular in Tregs, CA may be released upon appropriate treatments, eg with the CA-releasing agent reserpine2  or with type I interferons (IFNs).5  In Tregs, released CA (and in particular dopamine) act upon dopaminergic D1-like (possibly D5) receptors and subserve a feed-back loop leading to functional suppression of these cells.2  CA may play opposite roles in tumor growth: dopamine exerts antitumor effects, possibly through dopaminergic D2-like receptor-dependent inhibition of angiogenesis,6  whereas norepinephrine and epinephrine, acting through β-adrenoceptors, promote tumor growth and angiogenesis.7 

Tumor-infiltrating Tregs may thus at the same time represent a source of endogenous CA and a target for exogenous drugs acting on CA receptors. Treatment with dopaminergic agents could result in reduction of both tumor neovascularization and of Treg-dependent local suppression of the immune response. CA release from Tregs themselves, triggered by use of a a CA-releasing agent such as reserpine, type I IFNs, or possibly other drugs such as buproprione,8  could provide an additional local source of dopamine, while inclusion of appropriate β-adrenoceptor antagonists (β-blockers) could block the potentially detrimental effects of norepinephrine and epinephrine released from sympathoadrenergic nerve endings and adrenals, as well as from tumor-infiltrating Tregs.

In summary, increased resistance of Tregs against oxidative stress1  is in line with the high content of CA which occurs in these cells.2  CA, together with their receptors, may indeed represent a convenient target for novel immunomodulating and anticancer therapies, also in view of the wide array of dopaminergic and adrenergic agents in clinical use for different indications (in, eg, neurology, neuropsychiatry, cardiology) and of their usually good tolerability profile.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Marco Cosentino, MD, PhD, Department of Clinical Medicine, Section of Experimental and Clinical Pharmacology, University of Insubria, Via Ottorino Rossi n 9, 21100 Varese, VA, Italy; e-mail: marco.cosentino@uninsubria.it

1
Mougiakakos
 
D
Johansson
 
CC
Kiessling
 
R
Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress–induced cell death.
Blood
2009
, vol. 
113
 (pg. 
3542
-
3545
)
2
Cosentino
 
M
Fietta
 
AM
Ferrari
 
M
et al. 
Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop.
Blood
2007
, vol. 
109
 (pg. 
632
-
642
)
3
Stokes
 
AH
Hastings
 
TG
Vrana
 
KE
Cytotoxic and genotoxic potential of dopamine.
J Neurosci Res
1999
, vol. 
55
 (pg. 
659
-
665
)
4
Cosentino
 
M
Zaffaroni
 
M
Marino
 
F
et al. 
Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis.
J Neuroimmunol
2002
, vol. 
133
 (pg. 
233
-
240
)
5
Cosentino
 
M
Zaffaroni
 
M
Ferrari
 
M
et al. 
Interferon-gamma and interferon-beta affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis.
J Neuroimmunol
2005
, vol. 
162
 (pg. 
112
-
121
)
6
Sarkar
 
C
Chakroborty
 
D
Chowdhury
 
UR
Dasgupta
 
PS
Basu
 
S
Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models.
Clin Cancer Res
2008
, vol. 
14
 (pg. 
2502
-
2510
)
7
Thaker
 
PH
Han
 
LY
Kamat
 
AA
et al. 
Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma.
Nat Med
2006
, vol. 
12
 (pg. 
939
-
944
)
8
Foley
 
KF
DeSanty
 
KP
Kast
 
RE
Bupropion: pharmacology and therapeutic applications.
Expert Rev Neurother
2006
, vol. 
6
 (pg. 
1249
-
1265
)
Sign in via your Institution