Abstract
Abstract 2851
Poster Board II-827
ABT-737 and its orally active analog ABT-263 are Bcl-2-family inhibitors that are currently in clinical trials for a variety of cancers including hematological malignancies such as multiple myeloma. Previously, we reported that the sensitivity of multiple myeloma cell lines to ABT-737 correlates with the interactions, but not the expression, of Bcl-2 proteins. Analysis of 6 multiple myeloma cell lines revealed that expression of Bcl-2 proteins did not correlate with sensitivity, however the sensitive cells (8226/S, MM.1S and KMS-11) have a substantial amount of their pro-apoptotic Bcl-2 protein, Bak, bound to Bcl-xL. On the other hand, in the insensitive cell lines (U266, KMS-11 and OPM2), Bak was found to be associated with Mcl-1, a family member that does not bind ABT-737 and thereby confers resistance to this drug. Furthermore, we also showed that release of the BH3-only protein Bim by ABT-737 from Bcl-xL and Bcl-2 also contributes to cell death in 8226/S and MM.1S. The purpose of the current study is to further investigate the role of Bim in ABT-737-induced cell death in the multiple myeloma lines. Similar to Bak, a substantial amount of Bim is bound to Bcl-xL and Bcl-2 in the ABT-737-sensitive cell lines, MM.1S and KMS-18, while in the insensitive cell lines, it is highly bound to Mcl-1. Surprisingly, in the ABT-737-sensitive 8226/S cells, Bim appears to bind to Mcl-1. However in these cells, ABT-737 treatment resulted in upregulation of Noxa, which is a BH3-only protein that binds Mcl-1 and can release Bim. Taken together these data suggest that although binding of Bim to Mcl-1 may confer resistance to ABT-737, in certain cell types this treatment could also induce Noxa expression that antagonizes Mcl-1-mediated resistance. Consistent with this hypothesis, Mcl-1 overexpression as well as knockdown of Noxa expression significantly protected 8226/S cells from ABT-737-induced cell death while they had no effect in MM.1S cells. To further demonstrate the role of Bim in ABT-737-induced cell death, ABT-resistant 8226/S, KMS-11, KMS-18 and U266 cell lines were generated. In the resistant cell lines of 8226/S and KMS-18, Bim is exclusively bound to Mcl-1, which was overexpressed as compared to the parental cells. Bak binding was not affected by acquisition of ABT-737 resistance. This result is in agreement with the findings that interaction of Bim and Mcl-1 confers resistance to ABT-737. On the other hand, in ABT-resistant U266 and KMS-11 cell lines, Bim expression was down-regulated while Mcl-1 levels were not changed. Thus, it appears that in cells where Bim is already bound to Mcl-1, further resistance is achieved by down-regulating the expression of this BH3-only protein. Overall, these results suggest that the complex interactions between Bcl-2 proteins need to be investigated in order to understand how multiple myeloma cells may respond to ABT-737 treatment.
Boise:University of Chicago: Patents & Royalties.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal