Abstract 3266

Poster Board III-1

Introduction:

NmE2 (Nm23-H2, NDP kinase B) is one of a family of proteins that catalyze the transfer of gamma-phosphate between nucleoside-triphosphates and diphosphates. The two major family members, NmE1 and NmE2 are strongly implicated in the control of differentiation, proliferation, migration and apoptosis via interactions which are often independent of their kinase activity, NmE2 being a transcriptional activator of the c-myc gene. We recently identified NmE2 as a tumour associated, HLA-A32+ restricted, antigen in a patient with CML and found the protein (but not the mRNA) to be generally over expressed in CML but not in other haematological malignancies. We also detected a specific T-cell response in peripheral blood cells of a patient 5 years after transplantation. This identifies NmE2 as a potential target for both molecular and immunotherapy of CML. However, the development of immunotherapeutic approaches will depend on the ability of NmE2 to function as a tumour antigen in common HLA backgrounds. The aims of this study were firstly to investigate the antigenicity of NmE2 in the HLA-A2 background (which accounts for more than 50% of the Caucasian population), and secondly to characterise the regulatory relationship between Bcr/Abl and NmE2 using a cell line model of CML.

Materials and Methods:

5 nonameric NmE2 peptides with predicted anchor amino acids for HLA-A2 were loaded at concentrations of 10μM separately onto HLA-A2 expressing antigen presenting cells. Elispot Assays were carried out with CD8+ MLLCs (for the identification of antigenic peptides) or CD8+ cells isolated directly from a CML patient at different time points after HCT. Ba/F3 cells stably expressing wild type and mutant forms of Bcr/Abl were treated with imatinib and nilotinib (0 – 10 μM) for 48h. Bcr/Abl activity was assessed by FACS using antibodies specific for the phosphorylated forms of CrkL and Stat5. NmE2 and c-Myc protein were detected by immunocytochemistry and Western blotting with specific antibodies [Santa Cruz, clones L-16 and 9E10 respectively]. Levels of nme2 and c-myc mRNA were determined by quantitative real time PCR.

Results:

Full length NmE2 protein and 2 of 5 HLA-A2 anchor-containing peptides tested (NmE2132–140 and NmE2112–120) were specifically recognized by the HLA-A2+ CD8+ MLLC, demonstrating the antigenicity of NmE2 in the HLA-A2 background in vitro. Furthermore, while CD8+ T-cells from a transplanted HLA-A2+ CML patient showed little or no specific reactivity in the first 10 months after HCT, a distinct reactivity (up to 0.6 % NmE2 reactive CD8+ T cells) became apparent at later stages, consistent with the development of an immune response against NmE2-expressing cells in vivo. The patient remained negative for bcr/abl transcripts throughout this period. BA/F3 Bcr/Abl cells expressed increased levels of NmE2 protein (but not mRNA) compared to the parent BA/F3 line. Interestingly, treatment with imatinib or nilotinib reduced NmE2 protein expression in BA/F3 Bcr/Abl, but not in cells expressing Bcr/Abl mutants resistant to the respective inhibitors. Treatment of BA/F3 Bcr/Abl cells with the PI3K inhibitor Ly294002 resulted in reduced Bcr/Abl activity and a corresponding reduction in both c-Myc and NmE2 protein levels, without affecting mRNA levels.

Conclusion:

The over expression of NmE2 is closely linked to Bcr/Abl kinase activity, the predominant level of regulation being post-transcriptional and dependent on PI-3K activity. The NmE2 protein is restricted by HLA-A2 as well as by HLA-A32. The development of an NmE2-specific T-cell response in a CML patient after stem cell transplantation suggests that NmE2 functions as a tumour antigen in HLA-A2+ patients in vivo and may be relevant to the long term immune control of CML. NmE2 is therefore a promising candidate for the development of new immunotherapeutic strategies for the treatment of CML.

Disclosures:

Lange:BMS: Honoraria; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Niederwieser:BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution